Skip to main content
Log in

Enhanced 3D framework composite solid electrolyte with alumina-modified Li1.4Al0.4Ti1.6(PO4)3 for solid-state lithium battery

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium ion (Li+) battery with conventional liquid electrolyte has typical and notorious security risk. Composite solid electrolyte integrating the merits of various electrolyte systems is an attractive alternative of liquid electrolyte for new-type safety and long-life lithium (Li) batteries. Herein, a 3D framework composite solid electrolyte based on Al2O3-modified Li1.4Al0.4Ti1.6(PO4)3 (Al2O3@LATP) was prepared by solution casting and scraping method. The 3D framework composite electrolyte exhibits admirable ionic conductivity (1.1 × 10−4 S cm−1 at 60 °C), wide voltage window (4.8 V vs. Li/Li+), good thermal stability, and satisfactory electrolyte/electrode interfacial compatibility. The Al2O3@LATP can not only impede Li dendrite growth, but also avoid the LATP reaction with Li anode. The assembled solid-state LiFePO4|Li battery with 3D framework composite solid electrolyte delivers a satisfactory capacity retention up to 95.2% after 400 cycles at 0.5 C and under 60 °C. The 3D framework structural design of solid electrolyte affords a promising option for realizing safe energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All date included in this paper are available upon request by contact with the corresponding author. No datasets were generated or analyzed during the current study.

References

  1. Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:1–16

    Article  Google Scholar 

  2. Chen R, Li Q, Yu X, Chen L, Li H (2020) Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev 120:6820–6877

    Article  CAS  PubMed  Google Scholar 

  3. Fan L-Z, He H, Nan C-W (2021) Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat Rev Mater 6:1003–1019

    Article  CAS  Google Scholar 

  4. Wu H, Jia H, Wang C, Zhang JG, Xu W (2021) Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv Energy Mater 11:2003092

    Article  CAS  Google Scholar 

  5. Hobold GM, Lopez J, Guo R, Minafra N, Banerjee A, Meng YS, Shao-Horn Y, Gallant BM (2021) Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolyte. Nat Energy 6:951–960

    Article  CAS  Google Scholar 

  6. Lopez J, Mackanic DG, Cui Y, Bao Z (2019) Designing polymers for advanced battery chemistries. Nat Rev Mater 4:312–330

    Article  CAS  Google Scholar 

  7. Cheng XB, Zhao CZ, Yao YX, Liu H, Zhang Q (2019) Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 5:74–86

    Article  CAS  Google Scholar 

  8. Huang S, Chen L, Wang T, Hu J, Zhang Q, Zhang H, Nan C-W, Fan LZ (2020) Self-propagating enabling high lithium metal utilization ratio composite anodes for lithium metal batteries. Nano Lett 21:791–797

    Article  PubMed  Google Scholar 

  9. Wang H, Lin D, Liu Y, Li Y, Cui Y (2017) Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework. Sci Adv 3:e1701301

    Article  PubMed  PubMed Central  Google Scholar 

  10. Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J-G (2015) High rate and stable cycling of lithium metal anode. Nat Commun 6:6362–6371

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Cheng X, Chen X, Yan C, Zhang Q (2017) Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater 27:1605989

    Article  Google Scholar 

  12. Gonzalez MS, Yan Q, Holoubek J, Wu Z, Zhou H, Patterson N, Petrova V, Liu H, Liu P (2020) Draining over blocking: nano-composite Janus separators for mitigating internal shorting of lithium batteries. Adv Mater 32:1906836

    Article  CAS  Google Scholar 

  13. Guo Y, Niu P, Liu Y, Ouyang Y, Li D, Zhai T, Li H, Cui Y (2019) An auto transferable g-C3N4 Li+-modulating layer toward stable lithium anodes. Adv Mater 31:1900342

    Article  Google Scholar 

  14. Zhang H, Liao X, Guan Y, Xiang Y, Li M, Zhang W, Zhu X, Ming H, Lu L, Qiu J, Huang Y, Cao G, Yang Y, Mai L, Zhao Y, Zhang H (2018) Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat Commun 9:3729–3740

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kozen AC, Lin C-F, Pearse AJ, Schroeder MA, Han X, Hu L, Lee S-B, Rubloff GW, Noked M (2015) Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9:5884–5892

    Article  CAS  PubMed  Google Scholar 

  16. Yang Y, Yin Y, Davies DM, Zhang M, Mayer M, Zhang Y, Sablina ES, Wang S, Lee JZ, Borodin O, Rustomji CS, Meng YS (2020) Liquefied gas electrolytes for wide-temperature lithium metal batteries. Energy Environ Sci 13:2209–2219

    Article  CAS  Google Scholar 

  17. Yu Z, Wang H, Kong X, Huang W, Tsao Y, Mackanic DG, Wang K, Wang X, Huang W, Choudhury S, Zheng Y, Amanchukwu CV, Hung ST, Ma Y, Lomeli EG, Qin J, Cui Y, Bao Z (2020) Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat Energy 5:526–533

    Article  CAS  Google Scholar 

  18. Chen L, Li W, Fan L-Z, Nan C-W, Zhang Q (2019) Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv Funct Mater 29:1901047

    Article  Google Scholar 

  19. Huang Z, Pang W, Liang P, Jin Z, Grundish N, Li Y, Wang C-A (2019) A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. J Mater Chem A 7:16425–16436

    Article  CAS  Google Scholar 

  20. Cui G (2020) Reasonable design of high-energy-density solid-state lithium-metal batteries. Matter 2:805–815

    Article  Google Scholar 

  21. Balaish M, Gonzalez-Rosillo JC, Kim KJ, Zhu Y, Hood ZD, Rupp JLM (2021) Processing thin but robust electrolytes for solid-state batteries. Nat Energy 6:227–239

    Article  CAS  Google Scholar 

  22. Xu L, Li J, Deng W, Shuai H, Li S, Xu Z, Li J, Hou H, Peng H, Zou G, Ji X (2020) Garnet solid electrolyte for advanced all-solid-state Li batteries. Adv Energy Mater 11:2000648

    Article  Google Scholar 

  23. Zhang X, Liu T, Zhang S, Huang X, Xu B, Lin Y, Xu B, Li L, Nan C-W, Shen Y (2017) Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J Am Chem Soc 139:13779–13785

    Article  CAS  PubMed  Google Scholar 

  24. Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB (2016) Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc 138:9385–9388

    Article  CAS  PubMed  Google Scholar 

  25. Han X, Gong Y, Fu K, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L (2016) Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 16:572–575

    Article  PubMed  Google Scholar 

  26. Li D, Chen L, Wang T, Fan L-Z (2018) 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl Mater Interfaces 10:7069–7078

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Q, Liu X, Stalin S, Khan K, Archer LA (2019) Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat Energy 4:365–373

    Article  CAS  Google Scholar 

  28. Chen L, Li S-P, Li Y, Fan L-Z, Nan C-W, Goodenough JB (2018) PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic.” Nano Energy 46:176–184

    Article  CAS  Google Scholar 

  29. Zhu Q, Wang X, Miller JD (2019) Advanced nanoclay-based nanocomposite solid polymer electrolyte for lithium iron phosphate batteries. ACS Appl Mater Interfaces 11:8954–8960

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y, Zhao Y, Lu W, Sun L, Lin L, Zheng M, Sun X, Xie H (2021) PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries. Nano Energy 88:106205

    Article  CAS  Google Scholar 

  31. Li Y, Zhang W, Dou Q, Wong KW, Ng KM (2019) Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. J Mater Chem A 7:3391–3398

    Article  CAS  Google Scholar 

  32. Liu W, Lee SW, Lin D, Shi F, Wang S, Sendek AD, Cui Y (2017) Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat Energy 2:17035–17041

    Article  CAS  Google Scholar 

  33. Hu J, He P, Zhang B, Wang B, Fan L-Z (2020) Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater 26:283–289

    Article  Google Scholar 

  34. Huang S, Chen L, Wang T, Hu J, Zhang Q, Zhang H, Nan C, Fan L-Z (2021) Self-propagating enabling high lithium metal utilization ratio composite anodes for lithium metal batteries. Nano Lett 21:791–797

    Article  CAS  PubMed  Google Scholar 

  35. Duan H, Fan M, Chen WP, Li JY, Wang PF, Wang WP, Shi JL, Yin YX, Wan LJ, Guo YG (2019) Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv Mater 31:e1807789

    Article  PubMed  Google Scholar 

  36. Wang G, He P, Fan L-Z (2020) Asymmetric polymer electrolyte constructed by metal-organic framework for solid-state, dendrite-free lithium metal battery. Adv Funct Mater 31:2007198

    Article  Google Scholar 

  37. Ma D, Chen L, Li Y, Liu Y, Zhang H, Wang B (2022) Asymmetric polymer solid electrolyte constructed by dopamine-modified Li1.4Al0.4Ti1.6(PO4)3 for dendrite-free lithium battery. Ionics 28:2693–2700

    Article  CAS  Google Scholar 

  38. Zhou W, Wang Z, Pu Y, Li Y, Xin S, Li X, Chen J, Goodenough JB (2019) Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv Mater 31:e1805574

    Article  PubMed  Google Scholar 

  39. Stegmaier S, Schierholz R, Povstugar I, Barthel J, Rittmeyer SP, Yu S, Wengert S, Rostami S, Kungl H, Reuter K, Eichel RA, Scheurer C (2021) Nano-scale complexions facilitate Li dendrite-free operation in LATP solid-state electrolyte. Adv Energy Mater 11:2100707

    Article  CAS  Google Scholar 

  40. Yang L, Wang Z, Feng Y, Tan R, Zuo Y, Gao R, Zhao Y, Han L, Wang Z, Pan F (2017) Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li-electrolyte interface for solid state lithium-ion batteries. Adv Energy Mater 7:1701437

    Article  Google Scholar 

  41. Yu B-C, Park K, Jang J-H, Goodenough JB (2016) Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery. ACS Energy Lett 1:633–637

    Article  CAS  Google Scholar 

  42. Li MX, Wang XW, Yang YQ, Chang Z, Wu YP, Holze R (2015) A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J Membrane Sci 476:112–118

    Article  CAS  Google Scholar 

  43. Liang Y, Lin Z, Qiu Y, Zhang X (2011) Fabrication and characterization of LATP/PAN composite fiber-based lithium-ion battery separators. Electrochim Acta 56:6474–6480

    Article  CAS  Google Scholar 

  44. Shi X, Ma N, Wu Y, Lu Y, Xiao Q, Li Z, Lei G (2018) Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery. Solid State Ionics 325:112–119

    Article  CAS  Google Scholar 

  45. Chen L, Liu Y, Fan L-Z (2017) Enhanced interface stability of polymer electrolytes using organic cage-type cucurbit[6]uril for lithium metal batteries. J Electrochem Soc 164:A1834–A1840

    Article  CAS  Google Scholar 

  46. Madathingal RR, Wunder SL (2011) Thermal degradation of PEO on SiO2 nanoparticles as a function of SiO2 silanol density, hydrophobicity and size. Thermochim Acta 523:182–186

    Article  CAS  Google Scholar 

  47. Li Z, Sha W-X, Guo X (2019) Three-dimensional garnet framework-reinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability ACS Appl. Mater Interfaces 11:26920–26927

    Article  CAS  Google Scholar 

  48. Wan J, Xie J, Kong X, Liu Z, Liu K, Shi F, Pei A, Chen H, Chen W, Chen J, Zhang X, Zong L, Wang J, Chen L-Q, Qin J, Cui Y (2019) Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat Nanotechnol 14:705–712

    Article  CAS  PubMed  Google Scholar 

  49. Pan Q, Smith DM, Qi H, Wang S, Li CY (2015) Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv Mater 27:5995–6001

    Article  CAS  PubMed  Google Scholar 

  50. Wang Q, Song W-L, Fan L-Z, Song Y (2015) Flexible, high-voltage and free-standing composite polymer electrolyte membrane based on triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for lithium-ion batteries. J Membrane Sci 492:490–496

    Article  CAS  Google Scholar 

  51. Liu C, Wang J, Kou W, Yang Z, Zhai P, Liu Y, Wu W, Wang J (2021) A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries. Chem Eng J 404:126517

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (21875284, 52007181, and 22075320) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

LC and FZ wrote the main manuscript text, DM and YL prepared Figures 1–4, and FY prepared Figures 5 and 6. JQ, GC, and HZ designed the experiments. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hao Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4327 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhu, F., Ma, D. et al. Enhanced 3D framework composite solid electrolyte with alumina-modified Li1.4Al0.4Ti1.6(PO4)3 for solid-state lithium battery. Ionics 30, 2019–2028 (2024). https://doi.org/10.1007/s11581-024-05421-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05421-8

Keywords

Navigation