Skip to main content
Log in

Synthesis of Y-doped LiNi1/3Co1/3−xMn1/3YxO2 spheres with improved lithium storage

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The layered nickel-cobalt-manganese LiNi1/3Co1/3Mn1/3O2 (LNCM) was investigated as commercializable and high reversible capacity cathode material by more and more investigators in recent years. In this paper, the LiNi1/3Co1/3−xMn1/3YxO2 (x = 0, 0.02, 0.05, 0.10) samples were successfully obtained by a ball milling combined with calcination method. The synthesized LNCM nanocomposites are characterized by different analytical methods. The effect of amount of Y ions doping on the lithium storage performance of LiNi1/3Co1/3Mn1/3O2 was also studied systematically. The Y3+ ions replace the part of Co ions, reducing cation mixing and increasing the diffusion coefficient of Li+ ions in the lattice. It causes the unit cell volume to become larger, and the structure of the material becomes more stable in the intercalation and de-intercalation process of Li+ ions. These test results show that LiNi1/3Co1/3−0.05Mn1/3Y0.05O2 (Y-0.05 LNCM) sample behaves best electrochemical properties with the specific capacity of 174.8 mAh g–1 at 0.5 C after 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting this study’s findings are available from the corresponding author upon reasonable request.

References

  1. Wu F, Maier J, Yu Y (2020) Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 49(5):1569–1614

    Article  CAS  PubMed  Google Scholar 

  2. Wu F, Yushin G (2017) Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ Sci 10(2):435–459

    Article  CAS  Google Scholar 

  3. Lin L, Zhang L, Wang S, Kang F, Li B (2023) Micro-and nano-structural design strategies towards polycrystalline nickel-rich layered cathode materials. J Mater Chem A 11(15):7867–7897

    Article  CAS  Google Scholar 

  4. Qu X, Zhang B, Zhao J, Qiu B, Chen X, Zhou F, Li X, Gao S, Wang D, Yin H (2023) Salt-thermal methods for recycling and regenerating spent lithium-ion batteries: a review. Green Chem 25(8):2992–3015

    Article  CAS  Google Scholar 

  5. Zhang Y, Kim JC, Song HW, Lee S (2023) Recent achievements toward the development of Ni-based layered oxide cathodes for fast-charging Li-ion batteries. Nanoscale 15(9):4195–4218

    Article  CAS  PubMed  Google Scholar 

  6. Zheng H, Chen X, Yang Y, Li L, Li G, Guo Z, Feng C (2017) Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathode with high electrochemical performance. ACS Appl Mater Interfaces 9(45):39560–39568

    Article  CAS  PubMed  Google Scholar 

  7. Zhao F, Han F, Zhang S-W, Zhang Z-J (2021) Vacuum-drying of the LiNi1/3Co1/3Mn1/3O2 cathode material. ACS Sustain Chem Eng 9(2):639–647

    Article  CAS  Google Scholar 

  8. Lim J-M, Kim D, Park M-S, Cho M, Cho K (2016) Underlying mechanisms of the synergistic role of Li2MnO3 and LiNi1/3Co1/3Mn1/3O2 in high-Mn, Li-rich oxides. Phys Chem Chem Phys 18(16):11411–11421

    Article  CAS  PubMed  Google Scholar 

  9. Jiang X, Sha Y, Cai R, Shao Z (2015) The solid-state chelation synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries. J Mater Chem A 3(19):10536–10544

    Article  CAS  Google Scholar 

  10. Chen Z, Chao D, Chen M, Shen Z (2020) Hierarchical porous LiNi1/3Co1/3Mn1/3O2 with yolk-shell-like architecture as stable cathode material for lithium-ion batteries. RSC Adv 10(32):18776–18783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bryntesen SN, Tolstorebrov I, Svensson AM, Shearing P, Lamb JJ, Burheim OS (2023) Introducing lignin as a binder material for the aqueous production of NMC111 cathodes for Li-ion batteries. Mater Adv 4(2):523–541

    Article  CAS  Google Scholar 

  12. Zhou S, Mei T, Wang X, Qian Y (2018) Crystal structural design of exposed planes: express channels, high-rate capability cathodes for lithium-ion batteries. Nanoscale 10(37):17435–17455

    Article  CAS  PubMed  Google Scholar 

  13. Chang Q, Zhang H, Wang X, Shao W, Li H, Yuan F, Xu X, Xu S (2015) Structure and electrochemical performance of hollow microspheres of LiFexNi1/3−xCo1/3Mn1/3O2 (0.000≤ x≤ 0.267) as cathodes for lithium-ion batteries. RSC Adv 5(69):56274–56278

    Article  CAS  Google Scholar 

  14. Zhang Z, Yu M, Yang B, Jin C, Guo G, Qiu J (2020) Regeneration of Al-doped LiNi1/3Co1/3Mn1/3O2 cathode material via a sustainable method from spent Li-ion batteries. Mater Res Bull 126:110855

    Article  CAS  Google Scholar 

  15. Li Y, Liu J, Lei Y, Lai C, Xu Q (2017) Enhanced electrochemical performances of Na-doped cathode material LiNi1/3Co1/3Mn1/3O2 for lithium-ion batteries. J Mater Sci 52:13596–13605

    Article  CAS  Google Scholar 

  16. Yv L, Wang J, Li X, Dai L, Shao Z (2021) Preparation and electrochemical properties of Ti-doped LiNi1/3Co1/3Mn1/3O2 cathode materials via co-precipitation route. Ionics 27(9):3769–3776

    Article  CAS  Google Scholar 

  17. Zhao X, Liang G, Liu H, Liu Y (2018) Improved conductivity and electrochemical properties of LiNi0.5Co0.2Mn0.3O2 materials via yttrium doping. RSC Adv 8(8):4142–4152

    Article  CAS  Google Scholar 

  18. Kalaiselvi K, Kalaignan GP (2019) Yttrium-substituted LiNi0.3Mn0.3Co0.3O2 cathode material with enhanced cycling stability for rechargeable lithium-ion batteries. Ionics 25:991–997

    Article  CAS  Google Scholar 

  19. Li L, Wang L, Zhang X, Xie M, Wu F, Chen R (2015) Structural and electrochemical study of hierarchical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 7(39):21939–21947

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Zhang W, Shen S, Yan X, Wu R, Wu A, Lastoskie C, Zhang J (2017) Sacrificial template strategy toward a hollow LiNi1/3Co1/3Mn1/3O2 nanosphere cathode for advanced lithium-ion batteries. ACS Omega 2(11):7593–7599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee S, Park SS (2012) Atomistic simulation study of mixed-metal oxide (LiNi1/3Co1/3Mn1/3O2) cathode material for lithium ion battery. J Phys Chem C 116(10):6484–6489

    Article  CAS  Google Scholar 

  22. Xu S, Lu L, Jiang X, Luo Z, Liu K, Li G, Wang S (2016) Y-doped Li3V2(PO4)3/C as cathode material for lithium-ion batteries. J Appl Electrochem 46:279–287

    Article  CAS  Google Scholar 

  23. Li X, Zhang K, Mitlin D, Yang Z, Wang M, Tang Y, Jiang F, Du Y, Zheng J (2018) Fundamental insight into Zr modification of Li-and Mn-rich cathodes: combined transmission electron microscopy and electrochemical impedance spectroscopy study. Chem Mater 30(8):2566–2573

    Article  CAS  Google Scholar 

  24. Liu Y, Che W, Gao D, Zhang D, Chang C (2022) Ta doping improves the cyclability and rate performance of a nickel-rich NCA cathode via promoted electronic and cationic conductivity. ACS Sustain Chem Eng 10(50):16516–16526

    Article  CAS  Google Scholar 

  25. Zheng J, Ye Y, Liu T, Xiao Y, Wang C, Wang F, Pan F (2019) Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control. Acc Chem Res 52(8):2201–2209

    Article  CAS  PubMed  Google Scholar 

  26. Zhu J, Yan J, Zhang L (2019) High specific capacity Mg-doping LiNi1/3Mn1/3Co1/3O2 cathode materials synthesized by a simple stepwise co-precipitation method. Micro Nano Lett 14(2):129–132

    Article  CAS  Google Scholar 

  27. Li X, Peng H, Wang MS, Zhao X, Huang PX, Yang W, Xu J, Wang ZQ, Qu MZ, Yu ZL (2016) Enhanced electrochemical performance of Zr-modified layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion batteries. ChemElectroChem 3(1):130–137

    Article  CAS  Google Scholar 

  28. Kaddami A, Ouzaouit K, Lamsayety I, Faqir H, Benzakour I, Saadoune I (2021) Effect of low Al3+ doping on the structural, electrochemical performances, and thermal stability of the LiNi1/3Co1/3Co1/3O2 electrode material for lithium-ion batteries. Int J Energy Res 45(9):13925–13935

    Article  CAS  Google Scholar 

  29. Li L, Liu Q, Huang J, Luo S, Sun H, Zheng H, Feng C (2020) Synthesis and electrochemical properties of Zn-doping LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion battery application. J Mater Sci Mater El 31:12409–12416

    Article  CAS  Google Scholar 

  30. Huang B, Cheng L, Li X, Zhao Z, Yang J, Li Y, Pang Y, Cao G (2022) Layered cathode materials: precursors, synthesis, microstructure, electrochemical properties, and battery performance. Small 18(20):2107697

    Article  CAS  Google Scholar 

  31. Wu F, Kim GT, Kuenzel M, Zhang H, Asenbauer J, Geiger D, Kaiser U, Passerini S (2019) Elucidating the effect of iron doping on the electrochemical performance of cobalt-free lithium-rich layered cathode materials. Adv Energy Mater 9(43):1902445

    Article  CAS  Google Scholar 

  32. Lv C, Yang J, Peng Y, Duan X, Ma J, Li Q, Wang T (2019) 1D Nb-doped LiNi1/3Co1/3Mn1/3O2 nanostructures as excellent cathodes for Li-ion battery. Electrochim Acta 297:258–266

    Article  CAS  Google Scholar 

  33. Lee E, Lee W, Kim J, Kim H, Kim M, Yun S, Lee S, Kim J, Park D, Kim D (2022) The effect of high-temperature storage on the reaction heterogeneity of Ni-rich layered cathode materials. Energy Storage Mater 46:259–268

    Article  Google Scholar 

  34. Li G, Huang Z, Zuo Z, Zhang Z, Zhou H (2015) Understanding the trace Ti surface doping on promoting the low temperature performance of LiNi1/3Co1/3Mn1/3O2 cathode. J Power Sources 281:69–76

    Article  CAS  Google Scholar 

  35. Li F-C, Zhang G, Zhang Z-L, Jian Y, Liu F-Y, Ming J, Jiang L-X (2022) Regeneration of Al-doped LiNi0.5Co0.2Mn0.3O2 cathode material by simulated hydrometallurgy leachate of spent lithium-ion batteries. T Nonfer Metal Soc 32(2):593–603

    Article  CAS  Google Scholar 

  36. Feng L, Liu Y, Zhang D, Wu L, Qin W (2021) Al substituted Mn position on Li[Ni0.5Co0.2Mn0.3]O2 for high rates performance of cathode material. Vacuum 188:110168

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 21476063), Key Laboratory for Research and Development of New Lithium-ion Battery Materials (2023-028), the Joint Fund of Bijie City and Guizhou University of Engineering Science (BiKeLianhe[2023]12th), and the Open-End Fund for Hubei Key Laboratory of Pollutant Analysis & Reuse Technology (No. PA 200104).

Author information

Authors and Affiliations

Authors

Contributions

L.L. proposed an experimental plan and prepared research related materials. L.L. and J.Z. expanded material related gauge and electrochemical properties testing. L.L., J.Z., H.Z. and S.W. wrote the main manuscript. H.L. and S.Y. are responsible for revising the article and touching up the language. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Hongying Liu or Shui-Jin Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, J., Zheng, H. et al. Synthesis of Y-doped LiNi1/3Co1/3−xMn1/3YxO2 spheres with improved lithium storage. Ionics 30, 1925–1933 (2024). https://doi.org/10.1007/s11581-024-05416-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05416-5

Keywords

Navigation