Skip to main content

Advertisement

Log in

Green method of encapsulating SnO2 in the matrix of corn stalk-derived carbon used for high-performance lithium-ion battery anode material

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Biomass-derived carbon has received widespread attention as an environment-friendly lithium-ion anode material. Simultaneously, SnO2-based electrodes have inherent limitations and urgently need to be optimized. This article proposes a facile hydrothermal carbonization method to encapsulate SnO2 particles into biomass-derived carbon. As the anode electrode of a lithium-ion battery, the composite exhibits high reversible capacities of 1439 mAh g−1 and 1160 mAh g−1 after 150 cycles at 0.2 C and 1 C, respectively. In addition, it also has excellent rate performance (567 mAh g−1 at 5 C). The improvement in electrochemical performance can be attributed to the fact that SnO2 nanoparticles are embedded in the conductive carbon layer, shortening the diffusion length of Li+ and maintaining structural integrity. This presents an effective way to design high-performance electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5). https://doi.org/10.1016/j.mattod.2014.10.040

  2. Lu Q, Lu B, Chen MF, Wang XY, Xing T, Liu MH, Wang XY (2018) Porous activated carbon derived from Chinese-chive for high energy hybrid lithium-ion capacitor. J Power Sources 398:128–136. https://doi.org/10.1016/j.jpowsour.2018.07.062

    Article  CAS  Google Scholar 

  3. Luan YX, Nie GD, Zhao XW, Qiao N, Liu XC, Wang H, Zhang XN, Chen YQ, Long YZ (2019) The integration of SnO2 dots and porous carbon nanofibers for flexible supercapacitors. Electrochim Acta 308:121–130. https://doi.org/10.1016/j.electacta.2019.03.204

    Article  CAS  Google Scholar 

  4. Liu Q, Xiao ZY, Cui X, Zhang Q, Yang YK (2021) In situ confinement of ultrasmall SnO2 nanocrystals into redox-active polyimides for high-rate and long-cycling anode materials. Compos Commun 23:100561. https://doi.org/10.1016/j.coco.2020.100561.

    Article  Google Scholar 

  5. Lu XM, Luo FY, Ji YL, Zhang W, Tian QH, Sui ZY, Yang L (2021) Green strategy for embedding SnO2/Sn within carbon plates to achieve improved cyclic stability of lithium storage. J Alloys Compd 863:158743. https://doi.org/10.1016/j.jallcom.2021.158743.

    Article  CAS  Google Scholar 

  6. Tian QH, Zhang F, Yang L (2019) Fabricating thin two-dimensional hollow tin dioxide/carbon nanocomposite for high-performance lithium-ion battery anode. Appl Surf Sci 481:1377–1384. https://doi.org/10.1016/j.apsusc.2019.03.252

    Article  CAS  Google Scholar 

  7. Wang Y, Li XL, Chen L, Xiong ZM, Feng JJ, Zhao L, Wang Z, Zhao YM (2019) Ultrahigh-capacity tetrahydroxybenzoquinone grafted graphene material as a novel anode for lithium-ion batteries. Carbon 155:445–452. https://doi.org/10.1016/j.carbon.2019.09.011

    Article  CAS  Google Scholar 

  8. Ma DT, Li YL, Mi HW, Luo S, Zhang PX, Lin ZQ, Li JQ, Zhang H (2018) Robust SnO2 nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew Chem-Int Ed 57(29):8901–8905. https://doi.org/10.1002/anie.201802672

    Article  CAS  Google Scholar 

  9. Ji YL, Lu XM, Luo FY, Zhang W, Tian QH, Sui ZY (2021) Improved SnO2/C composite anode enabled by well-designed heterogeneous nanospheres decoration. Chem Phys Lett 763:138242. https://doi.org/10.1016/j.cplett.2020.138242.

    Article  CAS  Google Scholar 

  10. Tian QH, Chen YB, Sui ZY, Chen JZ, Yang L (2020) The sandwiched buffer zone enables porous SnO2@C micro-/nanospheres to toward high-performance lithium-ion battery anodes. Electrochim Acta 354:136699. https://doi.org/10.1016/j.electacta.2020.136699.

    Article  CAS  Google Scholar 

  11. Huang ZQ, Gao HY, Ju J, Yu JG, Kwon YU, Zhao YN (2020) Sycamore-fruit-like SnO2@C nanocomposites: rational fabrication, highly reversible capacity and superior rate capability anode material for Li storage. Electrochim Acta 331:135297. https://doi.org/10.1016/j.electacta.2019.135297.

    Article  CAS  Google Scholar 

  12. Chen YB, Luo FY, Tian QH, Zhang W, Sui ZY, Chen JZ (2020) Tin dioxide with a support assembled from hollow carbon nanospheres for high capacity anode of lithium-ion batteries. J Electroanal Chem 879:114797. https://doi.org/10.1016/j.jelechem.2020.114797.

    Article  CAS  Google Scholar 

  13. Zhou XY, Chen SM, Yang J, Bai T, Ren YP, Tian HY (2017) Metal organic frameworks derived okra-like SnO2 encapsulated in nitrogen-doped graphene for lithium ion battery. ACS Appl Mater Interfaces 9(16):14309–14318. https://doi.org/10.1021/acsami.7b04584

    Article  CAS  PubMed  Google Scholar 

  14. Wang SG, Liu DY, Yang JJ, Wang GM, Deng QR (2020) Preparation and properties of SnO2/nitrogen-doped foamed carbon as anode materials for lithium ion batteries. Ionics 26(11):5333–5341. https://doi.org/10.1007/s11581-020-03678-3

    Article  CAS  Google Scholar 

  15. Cui HT, Liu Y, Ren WZ, Wang MM, Zhao YN (2013) Large scale synthesis of highly crystallized SnO2 quantum dots at room temperature and their high electrochemical performance. Nanotechnology 24(34):345602. https://doi.org/10.1088/0957-4484/24/34/345602.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang D, Wang CR, Sun L, Xu XF, Wu BH, Chen XS (2017) facile hydrothermal synthesis of SnO2 nanoparticles with enhanced lithium storage performance. Chem Lett 46(11):1639–1642. https://doi.org/10.1246/cl.170757

    Article  CAS  Google Scholar 

  17. Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W, Zhang LQ, Mao SX, Hudak NS, Liu XH, Subramanian A, Fan HY, Qi LA, Kushima A, Li J (2010) In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010):1515–1520. https://doi.org/10.1126/science.1195628

    Article  CAS  PubMed  Google Scholar 

  18. Wang JZ, Du N, Zhang H, Yu JX, Yang DR (2011) Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries. J Phys Chem C 115(22):11302–11305. https://doi.org/10.1021/jp203168p

    Article  CAS  Google Scholar 

  19. Wang C, Du GH, Ståhl K, Huang HX, Zhong YJ, Jiang JZ (2012) Ultrathin SnO2 nanosheets: oriented attachment mechanism, nonstoichiometric defects, and enhanced lithium-ion battery performances. J Phys Chem C 116(6):4000–4011. https://doi.org/10.1021/jp300136p

    Article  CAS  Google Scholar 

  20. Sun XL, Qiao L, Qiao L, Pang H, Li D (2017) Synthesis of nanosheet-constructed SnO2 spheres with efficient photocatalytic activity and high lithium storage capacity. Ionics 23(11):3177–3185. https://doi.org/10.1007/s11581-017-2115-9

    Article  CAS  Google Scholar 

  21. Zhang FL, Teng XL, Shi WK, Song YF, Zhang J, Wang X, Li HS, Li Q, Li SD, Hu H (2020) SnO2 nanoflower arrays on an amorphous buffer layer as binder-free electrodes for flexible lithium-ion batteries. Appl Surf Sci 527:146910. https://doi.org/10.1016/j.apsusc.2020.146910.

    Article  CAS  Google Scholar 

  22. Lu Y, Yu Y, Lou XW (2018) Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4(5):972–996. https://doi.org/10.1016/j.chempr.2018.01.003

    Article  CAS  Google Scholar 

  23. Kim H, Yang DS, Um JH, Balasubramanian M, Yoo J, Kim H, Park SB, Kim JM, Yoon WS (2019) Comparative study of bulk and nano-structured mesoporous SnO2 electrodes on the electrochemical performances for next generation Li rechargeable batteries. J Power Sources 413:241–249. https://doi.org/10.1016/j.jpowsour.2018.12.035

    Article  CAS  Google Scholar 

  24. Zhang L, Zhang GQ, Wu HB, Yu L, Lou XW (2013) Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage. Adv Mater 25(18):2589–2593. https://doi.org/10.1002/adma.201300105

    Article  CAS  PubMed  Google Scholar 

  25. Sridhar V, Park H (2017) Hollow SnO2@ carbon core-shell spheres stabilized on reduced graphene oxide for high-performance sodium-ion batteries. New J Chem 41(2):442–446. https://doi.org/10.1039/c6nj03212e

    Article  CAS  Google Scholar 

  26. Han F, Li WC, Li MR, Lu AH (2012) Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. J Mater Chem 22(19):9645–9651. https://doi.org/10.1039/c2jm31359f

    Article  CAS  Google Scholar 

  27. Huang B, Li XH, Pei Y, Li S, Cao X, Massé RC, Cao GZ (2016) Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability. Small 12(14):1945–1955. https://doi.org/10.1002/smll.201503419

    Article  CAS  PubMed  Google Scholar 

  28. Zuo SY, Li DR, Wu ZG, Sun YQ, Lu QH, Wang FY, Zhuo RF, Yan D, Wang J, Yan PX (2018) SnO2/graphene oxide composite material with high rate performance applied in lithium storage capacity. Electrochim Acta 264:61–68. https://doi.org/10.1016/j.electacta.2018.01.093

    Article  CAS  Google Scholar 

  29. Feng YF, Bai C, Wu KD, Dong HF, Ke J, Huang XP, Xiong DP, He M (2020) Fluorine-doped porous SnO2@C nanosheets as a high performance anode material for lithium ion batteries. J Alloys Compd 843:156085. https://doi.org/10.1016/j.jallcom.2020.156085.

    Article  CAS  Google Scholar 

  30. Ma CR, Zhang WM, He YS, Gong Q, Che HY, Ma ZF (2016) Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. Nanoscale 8(7):4121–4126. https://doi.org/10.1039/c5nr07996a

    Article  CAS  PubMed  Google Scholar 

  31. Chen YB, Zhang F, Tian QH, Zhang W (2020) Facile preparation of one-dimensional hollow tin dioxide@carbon nanocomposite for lithium-ion battery anode. J Electroanal Chem 861:113943. https://doi.org/10.1016/j.jelechem.2020.113943.

    Article  CAS  Google Scholar 

  32. Tao Y, Zhu BJ, Wu XW, Tang P (2019) SnO2/carbon composites prepared by hydrothermal electrochemical method. J Mater Sci-Mater Electron 30(14):13576–13581. https://doi.org/10.1007/s10854-019-01725-y

    Article  CAS  Google Scholar 

  33. Jiang LL, Sheng LZ, Fan ZJ (2018) Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China-Mater 61(2):133–158. https://doi.org/10.1007/s40843-017-9169-4

    Article  CAS  Google Scholar 

  34. Imtiaz S, Zhang J, Zafar ZA, Ji SN, Huang TZ, Anderson JA, Zhang ZL, Huang YH (2016) Biomass-derived nanostructured porous carbons for lithium-sulfur batteries. Sci China-Mater 59(5):389–407. https://doi.org/10.1007/s40843-016-5047-8

    Article  CAS  Google Scholar 

  35. Sun F, Wang LJ, Peng YT, Gao JH, Pi XX, Qu ZB, Zhao GB, Qin YK (2018) Converting biomass waste into microporous carbon with simultaneously high surface area and carbon purity as advanced electrochemical energy storage materials. Appl Surf Sci 436:486–494. https://doi.org/10.1016/j.apsusc.2017.12.067

    Article  CAS  Google Scholar 

  36. Gao SY, Chen YL, Fan H, Wei XJ, Hu CG, Luo HX, Qu LT (2014) Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors. J Mater Chem A 2(10):3317–3324. https://doi.org/10.1039/c3ta14281g

    Article  CAS  Google Scholar 

  37. Tang K, White RJ, Mu XK, Titirici MM, van Aken PA, Maier J (2012) Hollow carbon nanospheres with a high rate capability for lithium-based batteries. Chemsuschem 5(2):400–403. https://doi.org/10.1002/cssc.201100609

    Article  CAS  PubMed  Google Scholar 

  38. Guo Y, Cao L, Chen C, Lu Y, Luo RJ, Yu QH, Zhang Y, Wang YG, Liu XM, Luo YS (2018) Natural porous biomass carbons derived from loofah sponge for construction of SnO2@C composite: a smart strategy to fabricate sustainable anodes for Li-ion batteries. ChemSelect 3(21):5883–5890. https://doi.org/10.1002/slct.201800800

    Article  CAS  Google Scholar 

  39. Zhang W, Xu YL, Li HH, Wang CX, Qin BS, Li ZM, Chen Y, Jiang K, Zhang H (2020) Incorporating SnO2 nanodots into wood flour-derived hierarchically porous carbon as low-cost anodes for superior lithium storage. J Electroanal Chem 856:113654. https://doi.org/10.1016/j.jelechem.2019.113654Article

    Article  CAS  Google Scholar 

  40. Liu C, He ZY, Niu JM, Cheng Q, Zhao ZC, Li HR, Shi J, Wang HL (2021) Two-dimensional SnO2 anchored biomass-derived carbon nanosheet anode for high-performance Li-ion capacitors. RSC Adv 11(17):10018–10026. https://doi.org/10.1039/d1ra00822f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang XH, Chen D, Zhou YP, Yang D, Liu WL, Feng YZ, Rui XH, Yu Y (2021) Mesoporous carbon nanosheet-assembled flowers towards superior potassium storage. Chin Chem Lett 32(3):1161–1164. https://doi.org/10.1016/j.cclet.2020.09.025

    Article  CAS  Google Scholar 

  42. Yang D, Chen D, Jiang Y, Ang EHX, Feng YZ, Rui XH, Yu Y (2021) Carbon-based materials for all-solid-state zinc-air batteries. Carbon Energy 3(1):50–65. https://doi.org/10.1002/cey2.88

    Article  CAS  Google Scholar 

  43. Li Y, Meng Q, Ma J, Zhu CL, Cui JR, Chen ZX, Guo ZP, Zhang T, Zhu SM, Zhang D (2015) Bioinspired carbon/SnO2 composite anodes prepared from a photonic hierarchical structure for lithium batteries. ACS Appl Mater Interfaces 7(21):11146–11154. https://doi.org/10.1021/acsami.5b02774

    Article  CAS  PubMed  Google Scholar 

  44. Hou JZ, Fan L, Wang BY, Yu KF, Wang SQ, Liu HM (2022) Corn stalk cellulose-derived carbon composited with SnO2 nanoparticles used as anode for high-performance lithium-ion batteries. Ionics 28(11):4933–4942. https://doi.org/10.1007/s11581-022-04739-5

    Article  CAS  Google Scholar 

  45. Zhang ZQ, Xue JS, Song KX, Wang XF, Yu KF, Li XJ (2019) Corn stalks-derived carbon-SnO2 composite as anodes for lithium-ion batteries. ChemSelect 4(5):1557–1561. https://doi.org/10.1002/slct.201803384

    Article  CAS  Google Scholar 

  46. Xie XQ, Su DW, Zhang JQ, Chen SQ, Mondal AK, Wang GX (2015) A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries. Nanoscale 7(7):3164–3172. https://doi.org/10.1039/c4nr07054b

    Article  CAS  PubMed  Google Scholar 

  47. Wang HK, Wang JK, Xie SM, Liu WX, Niu CM (2018) Template synthesis of graphitic hollow carbon nanoballs as supports for SnOx nanoparticles towards enhanced lithium storage performance. Nanoscale 10(13):6159–6167. https://doi.org/10.1039/c8nr00405f

    Article  CAS  PubMed  Google Scholar 

  48. Zhang M, Zhen YH, Sun FH, Xu C (2016) Hydrothermally synthesized SnO2-graphene composites for H2 sensing at low operating temperature. Mater Sci Eng B-Adv Funct Solid-State Mater 209:37–44. https://doi.org/10.1016/j.mseb.2015.10.009

    Article  CAS  Google Scholar 

  49. Pan QC, Zheng FH, Ou X, Yang CH, Xiong XH, Liu ML (2017) MoS2 encapsulated SnO2-SnS/C nanosheets as a high performance anode material for lithium ion batteries. Chem Eng J 316:393–400. https://doi.org/10.1016/j.cej.2017.01.111

    Article  CAS  Google Scholar 

  50. Su LW, Xu YW, Xie J, Wang LB, Wang YH (2016) Multi-yolk-shell SnO2/Co3Sn2@C nanocubes with high initial Coulombic efficiency and oxygen reutilization for lithium storage. ACS Appl Mater Interfaces 8(51):35172–35179. https://doi.org/10.1021/acsami.6b10450

    Article  CAS  PubMed  Google Scholar 

  51. Hu GW, Chen AY, Yu RH, Zhong KZ, Zhang YY, Wu JS, Zhou L, Mai LQ (2021) Solvent-free encapsulation of ultrafine SnO2 nanoparticles in N-doped carbon for high-capacity and durable lithium storage. Acs Appl Energy Mater 4(6):6277–6283. https://doi.org/10.1021/acsaem.1c01056

    Article  CAS  Google Scholar 

  52. Shah M, Lee J, Park AR, Choi Y, Kim WJ, Park J, Chung CH, Kim J, Lim B, Yoo PJ (2017) Ultra-fine SnO2 nanoparticles doubly embedded in amorphous carbon and reduced graphene oxide (rGO) for superior lithium storage. Electrochim Acta 224:201–210. https://doi.org/10.1016/j.electacta.2016.12.049

    Article  CAS  Google Scholar 

  53. Yang HQ, Wang B, Li YD, Du HM, Zhao JS, Xie Y (2023) Nano SnO2 loaded on N-doped carbon nanorods derived from metal- complex covalent organic frameworks for anode in lithium ion batteries. J Alloys Compd 945:169302. https://doi.org/10.1016/j.jallcom.2023.169302.

    Article  CAS  Google Scholar 

  54. Shen HL, Xia XF, Yan S, Jiao XY, Sun DP, Lei W, Hao QL (2021) SnO2/NiFe2O4/graphene nanocomposites as anode materials for lithium ion batteries. J Alloys Compd 853:157017. https://doi.org/10.1016/j.jallcom.2020.157017.

    Article  CAS  Google Scholar 

  55. Birrozzi A, Raccichini R, Nobili F, Marinaro M, Tossici R, Marassi R (2014) High-stability graphene nano sheets/SnO2 composite anode for lithium ion batteries. Electrochim Acta 137:228–234. https://doi.org/10.1016/j.electacta.2014.06.024

    Article  CAS  Google Scholar 

  56. Wu RB, Wang DP, Rui XH, Liu B, Zhou K, Law AWK, Yan QY, Wei J, Chen Z (2015) In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv Mater 27(19):3038–3044. https://doi.org/10.1002/adma.201500783

    Article  CAS  PubMed  Google Scholar 

  57. Xie W, Gu L, Xia F, Liu B, Hou X, Wang Q, Liu D, He D (2016) Fabrication of voids-involved SnO2@C nanofibers electrodes with highly reversible Sn/SnO2 conversion and much enhanced coulombic efficiency for lithium-ion batteries. J Power Sources 327:21–28. https://doi.org/10.1016/j.jpowsour.2016.07.030

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Jilin Provincial Scientific and Technological Department (20210201121GX and 20220201048GX).

Author information

Authors and Affiliations

Authors

Contributions

Liufei Yue: Conceptualization, Data curation; Weiguo Yao: Methodology, Investigation, Data curation; Ce Liang: Data curation; Baoying Wang: Data curation; Fei Teng: Data curation; Shuang Gao: Investigation, Writing-review & editing.

Corresponding author

Correspondence to Shuang Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, L., Yao, W., Liang, C. et al. Green method of encapsulating SnO2 in the matrix of corn stalk-derived carbon used for high-performance lithium-ion battery anode material. Ionics 30, 1993–2005 (2024). https://doi.org/10.1007/s11581-024-05413-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05413-8

Keywords

Navigation