Skip to main content
Log in

Studies on potassium-ion conducting gel polymer electrolytes containing poly(vinylidene fluoride-hexafluoropropylene) polymer, potassium permanganate salt added with different plasticizers

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, a comparative study is presented utilizing a K+ conducting gel polymer electrolyte (GPE) system comprising of a poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) polymer matrix combined with potassium permanganate (KMnO4) salt and two different plasticizers as a binary combination of ethylene carbonate (EC) + propylene carbonate (PC) and tetraethylene glycol dimethyl ether (TEGDME). The electrolyte with TEGDME solvent shows an ionic conductivity (σ) of 7.01 × 10−6 S cm−1 with hopping of ions as charge transport behavior. The fabricated electrolyte possesses > 98% contribution from the ions, and the electro-chemical stability range is up to 3.2 V. The dielectric analysis shows that the electrolyte with TEGDME solvent possesses a higher value of the dielectric constant, dielectric loss, tangent loss, and dc conductivity, along with a higher free ion number density (N) in comparison to the counter-electrolyte specimens with EC:PC solvent. The thermal studies confirm the gel phase of both electrolytes with negligible weight loss till 100 °C. Polymer-salt complex interactions are confirmed using Fourier transform infrared spectroscopy (FTIR), while X-ray diffraction (XRD) analysis is used to study the variations in crystallinity brought about by the polymer and both electrolyte samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Patel M, Mishra K, Banerjee R, Chaudhari J, Kanchan DK, Kumar D (2023) Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems. J Energy Chem 81:221–259. https://doi.org/10.1016/j.jechem.2023.02.023

    Article  CAS  Google Scholar 

  2. Kumar D, Gohel K, Kanchan DK, Mishra K (2020) Dielectrics and battery studies on flexible nanocomposite gel polymer electrolyte membranes for sodium batteries. J Mater Sci Mater Electron 31:13249–13260. https://doi.org/10.1007/s10854-020-03877-8

  3. Kumar V A, John B, TD M (2020) Potassium ion batteries: key to future large scale energy storage? Appl Energy Mater 3:9478–9492. https://doi.org/10.1021/acsaem.0c01574

    Article  CAS  Google Scholar 

  4. Ravi M, Bhavani S, Pavani Y, Narasimha Rao VVR (2013) Investigation on electrical and dielectric properties of PVP:KCLO4 polymer electrolyte films. Indian J Pure Appl Phys 51:362–366. https://doi.org/10.1016/j.solidstatesciences.2013.02.006

    Article  CAS  Google Scholar 

  5. Patel M, Singh R, Prajapati AK, Kumar Y, Hmar JJL, Chaki SH, Kanchan DK, Kumar D (2023) Effect of varying lithium perchlorate salt concentration on electrochemical and physical properties of polymer gel electrolytes containing heat-resistant poly(methyl methacrylate) and succinonitrile. J Appl Electrochem. https://doi.org/10.1007/s10800-023-02014-7

    Article  Google Scholar 

  6. Syali MS, Kumar D, Mishra K, Kanchan DK (2020) Recent advances in electrolytes for room-temperature sodium-sulfur batteries: a review. Energy Stor Mater 31:352–372. https://doi.org/10.1016/j.ensm.2020.06.023

    Article  Google Scholar 

  7. Ahmad AL, Farooqui UR, Hamid NA (2018) Effect of graphene oxide (GO) on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer electrolyte membrane. Polymer (Guildf) 142:330–336. https://doi.org/10.1016/j.polymer.2018.03.052

    Article  CAS  Google Scholar 

  8. Shalu S, Singh VK, Singh RK (2015) Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C Mater 3:7305–7318. https://doi.org/10.1039/C5TC00940E

    Article  CAS  Google Scholar 

  9. Bhide A, Hariharan K (2007) Ionic transport studies on (PEO)6:NaPO3 polymer electrolyte plasticized with PEG400. Eur Polym J 43:4253–4270. https://doi.org/10.1016/j.eurpolymj.2007.07.038

    Article  CAS  Google Scholar 

  10. Dave G, Maheshwaran C, Kanchan D (2019) Conductivity enhancement in Na+-blend electrolyte system via addition of (EC+PC) plasticizers. AIP Conf Proc 2115:030234. https://doi.org/10.1063/1.5113073

    Article  CAS  Google Scholar 

  11. Razalli SMM, Saaid SIYSM, Kudin TIT, Yahya MZA, Hassan OH, Ali MM (2016) Electrochemical properties of glyme based plasticizer on gel polymer electrolytes doped with lithium bis(trifluoromethanesulfonyl)imide. Mater Sci Forum 846:534–538. https://doi.org/10.4028/www.scientific.net/MSF.846.534

    Article  Google Scholar 

  12. Singh R, Maheshwaran C, Kanchan DK, Mishra K, Singh PK, Kumar D (2021) Ion-transport behavior in tetraethylene glycol dimethyl ether incorporated sodium ion conducting polymer gel electrolyte membranes intended for sodium battery application. J Mol Liq 336:116594. https://doi.org/10.1016/j.molliq.2021.116594

    Article  CAS  Google Scholar 

  13. Yadav N, Hashmi SA (2020) Energy enhancement of quasi-solid-state supercapacitors based on a non-aqueous gel polymer electrolyte via a synergistic effect of dual redox additives diphenylamine and potassium iodide. J Mater Chem A Mater 8:18266–18279. https://doi.org/10.1039/D0TA06331B

    Article  CAS  Google Scholar 

  14. Yin H, Han C, Liu Q, Wu F, Zhang F, Tang Y (2021) Recent advances and perspectives on the polymer electrolytes for sodium/potassium-ion batteries Small:2006627. https://doi.org/10.1002/smll.202006627

  15. Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22:1259–1279. https://doi.org/10.1007/s11581-016-1756-4

    Article  CAS  Google Scholar 

  16. Madhani V, Rathore MS, Kumar D (2023) The effects of solvents on the physical and electrochemical properties of potassium-ion conducting polymer gel electrolytes. High Perform Polym 35:28–35. https://doi.org/10.1177/09540083221112310

    Article  CAS  Google Scholar 

  17. Ford HO, Cui C, Schaefer JL (2020) Comparison of single-ion conducting polymer gel electrolytes for sodium, potassium, and calcium batteries: influence of polymer chemistry, cation identity, charge density, and solvent on conductivity. Batteries 6. https://doi.org/10.3390/batteries6010011

  18. Jyothi NK, Venkataratnam KK, Murty PN, Kumar KV (2016) Preparation and characterization of PAN–KI complexed gel polymer electrolytes for solid-state battery applications. Bull Mater Sci 39:1047–1055. https://doi.org/10.1007/s12034-016-1241-8

    Article  CAS  Google Scholar 

  19. Jibreel UM, Shehu AA, Ahmad AA, Adiya ZSG, Salisu S (2021) Investigation, synthesis, characterization and detail studies of polymer electrolyte films of poly (ethylmethacrylate) with potassium iodide as doping salt and ethylene carbonate as plasticizer (PEMA: KI + EC). Am J Sci Eng Res 5:24–33. https://iarjournals.com/upload/452433.pdf. Accessed 2 Sept 2021

  20. Hor AA, Yadav N, Hashmi SA (2022) High energy density carbon supercapacitor with ionic liquid-based gel polymer electrolyte: role of redox-additive potassium iodide. J Energy Storage 47:103608. https://doi.org/10.1016/j.est.2021.103608

    Article  Google Scholar 

  21. Babu B, Neumann C, Muench S, Enke M, Medenbach L, Leibing C, Balducci A, Turchanin A, Schubert US, Balducci A (2023) Diglyme-based gel polymer electrolytes for K-ion capacitors. Energy Stor Mater 56:342–350. https://doi.org/10.1016/j.ensm.2023.01.031

    Article  Google Scholar 

  22. Ravindran D, Vickraman P (2012) XRD Conductivity studies on PVA-PEG blend based Mg2+ ion conducting polymer electrolytes. Int J Sci Eng Appl:72–74. https://doi.org/10.7753/ijsea0101.1012

  23. Ahmed HT, Abdullah OGh (2020) Structural and ionic conductivity characterization of PEO:MC-NH4I proton-conducting polymer blend electrolytes based films. Results Phys 16:102861. https://doi.org/10.1016/j.rinp.2019.102861

    Article  Google Scholar 

  24. Abdullah OGh, Ahmed HT, Tahir DA, Jamal GM, Mohamad AH (2021) Influence of PEG plasticizer content on the proton-conducting PEO:MC-NH4I blend polymer electrolytes based films. Results Phys 23:104073. https://doi.org/10.1016/j.rinp.2021.104073

    Article  Google Scholar 

  25. Tong Y, Que M, Su S, Chen L (2016) Design of amphiphilic poly(vinylidene fluoride-co- hexafluoropropylene)-based gel electrolytes for high-performance lithium-ion batteries. Ionics (Kiel) 22:1311–1318. https://doi.org/10.1007/s11581-016-1662-9

    Article  CAS  Google Scholar 

  26. Zainuddin Z, Hambali D, Supa’at I, Osman Z (2017) Ionic conductivity, ionic transport and electrochemical characterizations of plastic crystal polymer electrolytes. Ionics (Kiel) 23:265–273. https://doi.org/10.1007/s11581-016-1836-5. 27 Sept 2016

  27. Abdullah OGh, Hanna RR, Ahmed HT, Mohamad AH, Saleem SA, Saeed MAM (2021) Conductivity and dielectric properties of lithium-ion biopolymer blend electrolyte based film. Results Phys 24:104135. https://doi.org/10.1016/j.rinp.2021.104135

    Article  Google Scholar 

  28. Rathika R, Suthanthiraraj SA (2019) Effect of ionic liquid 1-ethyl-3-methylimidazolium hydrogen sulfate on zinc-ion dynamics in PEO/PVdF blend gel polymer electrolytes. Ionics (Kiel) 25:1137–1146. https://doi.org/10.1007/s11581-018-2709-x

  29. Ahmed MB et al (2022) The study of ion transport parameters associated with dissociated cation using EIS model in solid polymer electrolytes (SPEs) based on PVA host polymer: XRD, FTIR, and dielectric properties. Arab J Chem 15:104196. https://doi.org/10.1016/j.arabjc.2022.104196

    Article  CAS  Google Scholar 

  30. Asnawi ASFM, Aziz SB, Nofal MM, Hamsan MH, Brza MA, Yusof YM, Abdilwahid RT, Muzakir SK, Kadir MFZ (2020) Glycerolized Li+ Ion conducting chitosan-based polymer electrolyte for energy storage EDLC device applications with relatively high energy density. Polymers (Basel) 12:1433. https://doi.org/10.3390/polym12061433

    Article  CAS  PubMed  Google Scholar 

  31. Sugumaran T, Silvaraj DS, Saidi NM, Farhana NK, Ramesh S, Ramesh K, Ramesh S (2019) The conductivity and dielectric studies of polymer electrolytes based on iota-carrageenan with sodium iodide and 1-butyl-3-methylimidazolium iodide for the dye- sensitized solar cells. Ionics (Kiel) 25:763–771. https://doi.org/10.1007/s11581-018-2756-3

  32. Zulkifli AM, Said NIA, Aziz SB, Dannoun EM, Hisham S, Shah S, Bakar A, Zainal Z, Tajuddin HA, Hadi JM, Brza MA, Saeed SR, Amin PO (2020) Characteristics of dye-sensitized solar cell assembled from modified chitosan-based gel polymer electrolytes incorporated with potassium iodide. Molecules 25:4115. https://doi.org/10.3390/molecules25184115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh R, Singh PK, Singh V, Bhattacharya B (2016) Agarose biopolymer electrolytes: ion conduction mechanism and dielectric studies. Cellul Chem Technol 51:949–955

    Google Scholar 

  34. Singh D, Kanjilal D, Laxmi G, Singh PK, Tomar S, Bhattacharya B (2018) Conductivity and dielectric studies of Li 3+-irradiated PVP-based polymer electrolytes. High Perform Polym 30:978–985. https://doi.org/10.1177/0954008318780494

    Article  CAS  Google Scholar 

  35. Abdulkadir BA, Dennis JO, Shukur MFBA, Nasef MME, Usman F (2021) Study on dielectric properties of gel polymer electrolyte based on PVA-K2CO3 composites. Int J Electrochem Sci 16:150296. https://doi.org/10.20964/2021.01.34

    Article  CAS  Google Scholar 

  36. Sravanthi K, Sundari GS (2022) Optical and electric modulus studies of PMMA: CH3COOLi complexes with the addition of EMIMTFSI. Rasayan J Chem 15:2310–2317. https://doi.org/10.31788/RJC.2022.1547055

    Article  CAS  Google Scholar 

  37. Bhargav PB, Mohan VM, Sharma AK, Rao VVRN (2009) Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications. Curr Appl Phys 9:165–171. https://doi.org/10.1016/j.cap.2008.01.006

    Article  Google Scholar 

  38. Verma ML, Sahu HD (2017) Study on ionic conductivity and dielectric properties of PEO- based solid nanocomposite polymer electrolytes. Ionics (Kiel) 23:2339–2350. https://doi.org/10.1007/s11581-017-2063-4

  39. Arya A, Sharma AL (2019) Temperature and salt-dependent dielectric properties of blend solid polymer electrolyte complexed with LiBOB. Macromol Res 27:334–345. https://doi.org/10.1007/s13233-019-7077-5

    Article  CAS  Google Scholar 

  40. Singh C, Shukla P, Agrawal S (2020) Ion transport studies in PVA:NH 4 CH 3 COO gel polymer electrolytes. High Perform Polym 32:208–219. https://doi.org/10.1177/0954008319898242

    Article  CAS  Google Scholar 

  41. Singh P, Gupta PN, Saroj AL (2020) Ion dynamics and dielectric relaxation behavior of PVA- PVP-NaI-SiO2 based nano-composites polymer blend electrolytes. Physica B Condens Matter 578:411850. https://doi.org/10.1016/j.physb.2019.411850

    Article  CAS  Google Scholar 

  42. Gohel K, Kanchan DK, Machhi HK, Soni SS, Maheshwaran C (2020) Gel polymer electrolyte based on PVDF-HFP:PMMA incorporated with propylene carbonate (PC) and diethyl carbonate (DEC) plasticizers: electrical, morphology, structural and electrochemical properties. Mater Res Express 7:025301. https://doi.org/10.1088/2053-1591/ab6c06

    Article  CAS  Google Scholar 

  43. Tuhania P, Singh PK, Bhattacharya B, Dhapola PS, Yadav S, Shukla PK, Gupta M (2018) PVDF-HFP and 1-ethyl-3-methylimidazolium thiocyanate–doped polymer electrolyte for efficient supercapacitors. High Perform Polym 30:911–917. https://doi.org/10.1177/0954008318772009

    Article  CAS  Google Scholar 

  44. Bandaranayake CM, Weerasinghe WADSS, Vidanapathirana KP, Perera KS (2016) A cyclic voltammetry study of a gel polymer electrolyte based redox-capacitor. Sri Lankan J Phys 16:19. https://doi.org/10.4038/sljp.v16i1.8026

    Article  Google Scholar 

  45. Manfo T A, Konwar S, Singh PK, Mehra RM, Kumar Y, Gupta M (2021) PEO + NaSCN and ionic liquid based polymer electrolyte for supercapacitor. Mater Today Proc 34:802–812. https://doi.org/10.1016/j.matpr.2020.05.340

    Article  CAS  Google Scholar 

  46. Jothi MA, Vanitha D, Bahadur SA, Nallamuthu N (2021) Proton conducting polymer electrolyte based on cornstarch, PVP, and NH4Br for energy storage applications. Ionics (Kiel) 27:225–237. https://doi.org/10.1007/s11581-020-03792-2

  47. Hamsan MH, Shukur MF, Kadir MFZ (2017) The effect of NH4NO3 towards the conductivity enhancement and electrical behavior in methyl cellulose-starch blend based ionic conductors. Ionics (Kiel) 23:1137–1154. https://doi.org/10.1007/s11581-016-1918-4

    Article  CAS  Google Scholar 

  48. Wilson J, Ravi G, Kulandainathan MA (2006) Electrochemical studies on inert filler incorporated poly (vinylidene fluoride - hexafluoropropylene) (PVdF - HFP) composite electrolytes. Polímeros 16:88–93. https://doi.org/10.1590/S0104-14282006000200006

    Article  CAS  Google Scholar 

  49. Tripathi M, Bobade SM, Kumar A (2019) Preparation of polyvinylidene fluoride-co- hexafluoropropylene-based polymer gel electrolyte and its performance evaluation for application in EDLCs. Bull Mater Sci 42:27. https://doi.org/10.1007/s12034-018-1685-0

    Article  CAS  Google Scholar 

  50. Aziz SB, Marf AS, Dannoun EMA, Brza MA, Abdullah RM (2020) The study of the degree of crystallinity, electrical equivalent circuit, and dielectric properties of polyvinyl alcohol (PVA)-based biopolymer electrolytes. Polymers (Basel) 12:2184. https://doi.org/10.3390/polym12102184

    Article  CAS  Google Scholar 

  51. Hamsan MH, Shukur MF, Kadir MFZ (2017) NH4NO3 as charge carrier contributor in glycerolized potato starch-methyl cellulose blend-based polymer electrolyte and the application in electrochemical double-layer capacitor. Ionics (Kiel) 23:3429–3453. https://doi.org/10.1007/s11581-017-2155-1

    Article  CAS  Google Scholar 

  52. Tripathi M, Kumar A (2018) Zinc oxide nanofiller-based composite polymer gel electrolyte for application in EDLCs. Ionics (Kiel) 24:3155–3165. https://doi.org/10.1007/s11581-018-2504-8

  53. Muthupradeepa R, Sivakumar M, Subadevi R, Ramachandran M, Palanisamy R, Yuvakkumar R (2020) Physical and electrochemical chattels of phosphonium ionic liquid- based solid and gel-polymer electrolyte for lithium secondary batteries. J Mater Sci Mater Electron 31:22933–22944. https://doi.org/10.1007/s10854-020-04820-7

  54. Mahendrakar S, Anna M, Reddy M J (2015) Structural, morphological and FTIR of PVDF-HFP and lithium tetrafluoroborate salt as polymer electrolyte membrane in lithium ion batteries. Int J Chemtech Res 8:319–328

    CAS  Google Scholar 

  55. Gohel K, Kanchan DK (2018) Ionic conductivity and relaxation studies in PVDF-HFP:PMMA-based gel polymer blend electrolyte with LiClO 4 salt. J Adv Dielectr 08:1850005. https://doi.org/10.1142/S2010135X18500054

    Article  CAS  Google Scholar 

  56. Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 22:2725–2745. https://doi.org/10.1007/s10008-018-3965-4

    Article  CAS  Google Scholar 

  57. Singh SK, Gupta H, Balo L, Na S, Singh VK, Tripathi AK, Verma YL, Singh RK (2018) Electrochemical characterization of ionic liquid based gel polymer electrolyte for lithium battery application. Ionics (Kiel) 24:1895–1906. https://doi.org/10.1007/s11581-018-2458-x

  58. Arya A, Sharma AL (2020) Investigation on enhancement of electrical, dielectric and ion transport properties of nanoclay-based blend polymer nanocomposites. Polym Bull 77:2965–2999. https://doi.org/10.1007/s00289-019-02893-x

  59. Gupta A, Jain A, Tripathi SK (2021) Structural, electrical and electrochemical studies of ionic liquid‑based polymer gel electrolyte using magnesium salt for supercapacitor application. J Polym Res 28:235. https://doi.org/10.1007/s10965-021-02597-9

Download references

Acknowledgements

Vaishali Madhani acknowledges the DST-FIST program of Applied Physics Department (SR/FST/PS-II/2017/20) of The M.S. University of Baroda for XRD characterization of samples. Vaishali Madhani and Mahendrasingh Rathore are grateful to the Parul University for their unending research support. Deepak Kumar acknowledges Science and Engineering Research Board, Department of Science and Technology, Government of India vide file No. CRG/2022/008719.

Funding

Research project by Science and Engineering Research Board, Department of Science and Technology, Government of India vide file No. CRG/2022/008719.

Author information

Authors and Affiliations

Authors

Contributions

Vaishali Madhani: Sample preparation, Writing—original draft, analysis. Deepak Kumar: Formal analysis and investigation, conceptualization and editing. Maitri Patel: Experimentation, analysis. D.K. Kanchan: Final draft, characterization. Kuldeep Mishra: Conceptualization, methodology. Mahendra Singh Rathore: Supervision, characterization.

Corresponding authors

Correspondence to Deepak Kumar or Mahendra Singh Rathore.

Ethics declarations

Ethical approval

The authors approve that the manuscript follows the ethical guideline.

Consent for publication

The authors agree with the publishing policy and submit this manuscript in accordance with this policy.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhani, V., Kumar, D., Patel, M. et al. Studies on potassium-ion conducting gel polymer electrolytes containing poly(vinylidene fluoride-hexafluoropropylene) polymer, potassium permanganate salt added with different plasticizers. Ionics 30, 2139–2153 (2024). https://doi.org/10.1007/s11581-024-05405-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05405-8

Keywords

Navigation