Skip to main content
Log in

Effect of polytetrafluoroethylene shedding on water and heat transport in the gas diffusion layer of proton exchange membrane fuel cells

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Water and heat management in the gas diffusion layer (GDL) is essential to the performance of proton exchange membrane fuel cells (PEMFCs). The flow and heat transfer model of lattice Boltzmann method (LBM) is used to study the effect of random shedding of polytetrafluoroethylene (PTFE) on water and heat transfer in GDL. The water saturation in the GDL during water invasion, the temperature distribution in the GDL at the stable water distribution, and the remaining water saturation during water removal are analyzed. The results show that different degrees of PTFE shedding lead to different exposure positions of hydrophilic carbon fibers, which may have a positive or negative effect on water transport in GDL. Compared to the case without PTFE shedding, the 20% PTFE shedding increases the water saturation by 0.6%, while the 40% PTFE shedding has a minimum water saturation of 0.438 due to the ability to create multiple water transport paths. PTFE shedding allows for a more uniform temperature distribution within the GDL. However, PTFE shedding hinders water removal, and the 40% PTFE shedding case has the largest remaining water saturation at 0.087 after purging with air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Agyekum EB, Ampah JD, Wilberforce T, Afrane S, Nutakor C (2022) Research progress, trends, and current state of development on PEMFC-new insights from a bibliometric analysis and characteristics of two decades of research output. Membranes 12(11):1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chadha K, Martemianov S, Thomas A (2021) Study of new flow field geometries to enhance water redistribution and pressure head losses reduction within PEM fuel cell. Int J Hydrog Energy 46(10):7489–7501

    Article  CAS  Google Scholar 

  3. Lee FC, Ismail MS, Ingham DB, Hughes KJ, Ma L, Lyth SM, Pourkashanian M (2022) Alternative architectures and materials for PEMFC gas diffusion layers: a review and outlook. Renew Sust Energ Rev 166:112640

    Article  CAS  Google Scholar 

  4. Yan F, Pei X, Yao J (2023) Numerical simulation of performance improvement of PEMFC by four-serpentine wave flow field. Ionics 29(2):695–709

    Article  CAS  Google Scholar 

  5. Zhang G, Jiao K (2018) Multi-phase models for water and thermal management of proton exchange membrane fuel cell: a review. J Power Sources 391:120–133

    Article  CAS  Google Scholar 

  6. Amirfazli A, Asghari S, Sarraf M (2018) An investigation into the effect of manifold geometry on uniformity of temperature distribution in a PEMFC stack. Energy 145:141–151

    Article  Google Scholar 

  7. Ko D, Doh S, Park HS, Kim MH (2018) The effect of through plane pore gradient GDL on the water distribution of PEMFC. Int J Hydrog Energy 43(4):2369–2380

    Article  CAS  Google Scholar 

  8. Shangguan X, Li Y, Qin Y, Cao S, Zhang J, Yin Y (2021) Effect of the porosity distribution on the liquid water transport in the gas diffusion layer of PEMFC. Electrochim Acta 371:137814

    Article  CAS  Google Scholar 

  9. Zhou X, Niu Z, Li Y, Sun X, Du Q, Xuan J, Jiao K (2019) Investigation of two-phase flow in the compressed gas diffusion layer microstructures. Int J Hydrog Energy 44(48):26498–26516

    Article  CAS  Google Scholar 

  10. Wang Y, Xu H, Zhang Z, Li H, Wang X (2022) Lattice Boltzmann simulation of a gas diffusion layer with a gradient polytetrafluoroethylene distribution for a proton exchange membrane fuel cell. Appl Energy 320:119248

    Article  CAS  Google Scholar 

  11. Guo L, Chen L, Zhang R, Peng M, Tao WQ (2022) Pore-scale simulation of two-phase flow and oxygen reactive transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of nonuniform wettability and porosity. Energy 253:124101

    Article  CAS  Google Scholar 

  12. Liao JD, Yang GG, Shen QW, Li SA, Jiang ZH, Wang H, Sheng ZH, Zhang GL, Zhang HP (2021) Effects of the structure, wettability, and rib-channel width ratio on liquid water transport in gas diffusion layer using the lattice Boltzmann method. Energy Fuels 35(20):16799–16813

    Article  CAS  Google Scholar 

  13. Jeon DH (2020) Effect of gas diffusion layer thickness on liquid water transport characteristics in polymer electrolyte membrane fuel cells. J Power Sources 475:228578

    Article  CAS  Google Scholar 

  14. Moslemi M, Javaherdeh K, Ashorynejad HR (2022) Effect of compression of microporous and gas diffusion layers on liquid water transport of PEMFC with interdigitated flow field by Lattice Boltzmann method. Colloids Surf, A 642:128623

    Article  CAS  Google Scholar 

  15. Shi X, Jiao D, Bao Z, Jiao K, Chen W, Liu Z (2022) Liquid transport in gas diffusion layer of proton exchange membrane fuel cells: effects of micro-porous layer cracks. Int J Hydrog Energy 47:6247–6258

    Article  CAS  Google Scholar 

  16. Jiao D, Jiao K, Zhong S, Du Q (2022) Investigations on heat and mass transfer in gas diffusion layers of PEMFC with a gas-liquid-solid coupled model. Appl Energy 316:118996

    Article  Google Scholar 

  17. He G, Yamazaki Y, Abudula A (2010) A three-dimensional analysis of the effect of anisotropic gas diffusion layer (GDL) thermal conductivity on the heat transfer and two-phase behavior in a proton exchange membrane fuel cell (PEMFC). J Power Sources 195(6):1551–1560

    Article  CAS  Google Scholar 

  18. Ahmed DH, Sung HJ, Bae J (2008) Effect of GDL permeability on water and thermal management in PEMFCs—II. Clamping force Int J Hydrog Energy 33(14):3786–3800

    Article  CAS  Google Scholar 

  19. Chen T, Liu S, Zhang J, Tang M (2019) Study on the characteristics of GDL with different PTFE content and its effect on the performance of PEMFC. Int J Heat Mass Transf 128:1168–1174

    Article  CAS  Google Scholar 

  20. Chen L, Wang Y, Tao W (2020) Experimental study on the effect of temperature and water content on the thermal conductivity of gas diffusion layers in proton exchange membrane fuel cell. Therm Sci Eng Prog 19:100616

    Article  Google Scholar 

  21. Bosomoiu M, Tsotridis G, Bednarek T (2015) Study of effective transport properties of fresh and aged gas diffusion layers. J Power Sources 285:568–579

    Article  CAS  Google Scholar 

  22. Molaeimanesh GR, Akbari MH (2014) Impact of PTFE distribution on the removal of liquid water from a PEMFC electrode by lattice Boltzmann method. Int J Hydrogen Energy 39(16):8401–8409

    Article  CAS  Google Scholar 

  23. Molaeimanesh GR, Akbari MH (2014) Water droplet dynamic behavior during removal from a proton exchange membrane fuel cell gas diffusion layer by Lattice-Boltzmann method. Korean J Chem Eng 31(4):598–610

    Article  CAS  Google Scholar 

  24. Molaeimanesh GR, Akbari MH (2016) Role of wettability and water droplet size during water removal from a PEMFC GDL by lattice Boltzmann method. Int J Hydrogen Energy 41(33):14872–14884

    Article  CAS  Google Scholar 

  25. Molaeimanesh GR, Shojaeefard MH, Moqaddari MR (2019) Effects of electrode compression on the water droplet removal from proton exchange membrane fuel cells. Korean J Chem Eng 36:136–145

    Article  CAS  Google Scholar 

  26. Kakaee AH, Molaeimanesh GR, Garmaroudi ME (2018) Impact of PTFE distribution across the GDL on the water droplet removal from a PEM fuel cell electrode containing binder. Int J Hydrogen Energy 43(32):15481–15491

    Article  CAS  Google Scholar 

  27. Chen L, Luan HB, He YL, Tao WQ (2012) Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields. Int J Therm Sci 51:132–144

    Article  Google Scholar 

  28. Yang GG, Liao JD, Shen QW, Li SA, Jiang ZH, Wang H, Li Z, Zhang GL, Huang NB (2023) Simulation of the purging process of randomly distributed droplets in a gas diffusion layer using lattice Boltzmann method. Korean J Chem Eng 40(7):1623–1632

  29. Kumar R, Radhakrishnan V, Haridoss P (2012) Enhanced mechanical and electrochemical durability of multistage PTFE treated gas diffusion layers for proton exchange membrane fuel cells. Int J Hydrogen Energy 37(14):10830–10835

    Article  Google Scholar 

  30. Kanda D, Watanabe H, Okazaki K (2013) Effect of local stress concentration near the rib edge on water and electron transport phenomena in polymer electrolyte fuel cell. Int J Heat Mass Tran 67:659–665

    Article  CAS  Google Scholar 

  31. Schulze M, Wagner N, Kaz T, Friedrich K (2007) Combined electrochemical and surface analysis investigation of degradation processes in polymer electrolyte membrane fuel cells. Electrochim Acta 52(6):2328–2336

    Article  CAS  Google Scholar 

  32. Gao Y, Ding Z (2023) Investigation of water freezing in gas diffusion layer of PEMFC using lattice Boltzmann method. Ionics 29(1):285–298

    Article  CAS  Google Scholar 

  33. Zhang L, Liu S, Wang Z, Li R (2023) Experimental and simulation analysis of liquid capillary fingering process in the gas diffusion layer. J Power Sources 554:232276

    Article  CAS  Google Scholar 

  34. Chen Q, Niu Z, Li H, Jiao K, Wang Y (2021) Recent progress of gas diffusion layer in proton exchange membrane fuel cell: two-phase flow and material properties. Int J Hydrog Energy 46(12):8640–8671

    Article  CAS  Google Scholar 

  35. Sepe M, Satjaritanun P, Hirano S, Zenyuk IV, Tippayawong N, Shimpalee S (2020) Investigating liquid water transport in different pore structure of gas diffusion layers for PEMFC using lattice boltzmann method. J Electrochem Soc 167(10):104516

    Article  CAS  Google Scholar 

  36. Liao JD, Yang GG, Shen QW, Li SA, Jiang ZH, Wang H, Zhang GL, Li Z, Sun B (2023) Simulation of the purging process of liquid water in a gas diffusion layer with a wetting gradient using the lattice Boltzmann method. Transp Porous Media 148(2):335–353

  37. Liao JD, Yang GG, Shen QW, Li SA, Jiang ZH, Wang H, Zhang GL, Li Z, Sun JC (2023) Simulation of liquid water removal in the gas diffusion layer with polytetrafluoroethylene random shedding using lattice Boltzmann method. Mater Today Commun 34:105293

    Article  CAS  Google Scholar 

  38. Guo ZL, Zhao TS (2005) A lattice Boltzmann model for convection heat transfer in porous media. Numer Heat Transfer, Part B 47(2):157–177

    Article  ADS  Google Scholar 

  39. Yan WW, Liu Y, Guo ZL, Xu YS (2006) Lattice Boltzmann simulation on natural convection heat transfer in a two-dimensional cavity filled with heterogeneously porous medium. Int J Mod Phys C 17(06):771–783

    Article  ADS  CAS  Google Scholar 

  40. Tomadakis MM, Robertson TJ (2005) Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results. J Compos Mater 39(2):163–188

    Article  Google Scholar 

  41. Wang M, Pan N, Wang J, Chen S (2007) Mesoscopic simulations of phase distribution effects on the effective thermal conductivity of microgranular porous media. J Colloid Interface Sci 311(2):562–570

    Article  ADS  CAS  PubMed  Google Scholar 

  42. García-Salaberri PA, Zenyuk IV, Hwang G, Vera M, Weber AZ, Gostick JT (2019) Implications of inherent inhomogeneities in thin carbon fiber-based gas diffusion layers: A comparative modeling study. Electrochim Acta 295:861–874

    Article  Google Scholar 

  43. Cao TF, Mu YT, Ding J, Lin H, He YL, Tao WQ (2015) Modeling the temperature distribution and performance of a PEM fuel cell with thermal contact resistance. Int J Heat Mass Transf 87:544–556

    Article  Google Scholar 

  44. Yablecki J, Hinebaugh J, Bazylak A (2012) Effect of liquid water presence on PEMFC GDL effective thermal conductivity. J Electrochem Soc 159(12):F805–F809

    Article  CAS  Google Scholar 

  45. Zhang H, Zhu L, Harandi HB, Duan K, Zeis R, Sui PC, Chuang PA (2021) Microstructure reconstruction of the gas diffusion layer and analyses of the anisotropic transport properties. Energy Conv Manag 241:114293

    Article  CAS  Google Scholar 

  46. Succi S, Foti E, Higuera F (1989) Three-dimensional flows in complex geometries with the lattice Boltzmann method. Europhys Lett 10:433–438

    Article  ADS  Google Scholar 

  47. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364

    Article  ADS  MathSciNet  Google Scholar 

  48. Jithin M, Siddharth S, Das MK, De A (2017) Simulation of coupled heat and mass transport with reaction in PEM fuel cell cathode using lattice Boltzmann method. Therm Sci Eng Prog 4:85–96

    Article  Google Scholar 

  49. Liao JD, Yang GG, Li SA, Shen QW, Jiang ZH, Wang H, Xu LY, Espinoza-Andaluz M, Pan XX (2021) Effect of structural parameters on mass transfer characteristics in the gas diffusion layer of proton exchange membrane fuel cells using the lattice Boltzmann method. Energy Fuels 35(3):2654–2664

    Article  CAS  Google Scholar 

  50. Gostick JT, Fowler MW, Pritzker MD, Ioannidis MA, Behra LM (2006) In-plane and through-plane gas permeability of carbon fiber electrode backing layers. J Power sources 162(1):228–238

    Article  CAS  Google Scholar 

  51. Oh H, Park J, Min K, Lee E, Jyoung J (2015) Effects of pore size gradient in the substrate of a gas diffusion layer on the performance of a proton exchange membrane fuel cell. Appl energy 149:186–193

    Article  ADS  CAS  Google Scholar 

  52. Chun JH, Park KT, Jo DH, Kim SG, Kim SH (2011) Numerical modeling and experimental study of the influence of GDL properties on performance in a PEMFC. Int J Hydrog Energy 36(2):1837–1845

    Article  CAS  Google Scholar 

  53. Pasaogullari U, Mukherjee PP, Wang CY, Chen KS (2007) Anisotropic heat and water transport in a PEFC cathode gas diffusion layer. J Electrochem Soc 154(8):B823

    Article  CAS  Google Scholar 

  54. Ira Y, Bakhshan Y, Khorshidimalahmadi J (2021) Effect of wettability heterogeneity and compression on liquid water transport in gas diffusion layer coated with microporous layer of PEMFC. Int J Hydrog Energy 46(33):17397–17413

    Article  CAS  Google Scholar 

Download references

Funding

This work is funded by the National Natural Science Foundation of China, grant number No. 52001045 and No. 51779025; Science and Technology Innovation Foundation of Dalian, China, grant number No. 2021JJ11CG004; and Laboratory of Transport Pollution Control and Monitoring Technology, grant number No. Z2209-030.

Author information

Authors and Affiliations

Authors

Contributions

JL: methodology, investigation, formal analysis, writing—original draft. GY: resources, supervision, funding acquisition. QS: supervision, funding acquisition, conceptualization, data curation, writing—review and editing. SL: resources, supervision. ZJ: writing—review and editing. PC: writing—review and editing. SZ: writing—review and editing. JS: writing—review and editing. BS: resources, supervision.

Corresponding authors

Correspondence to Guogang Yang or Qiuwan Shen.

Ethics declarations

Ethics approval

This work was carried out by obeying research and ethics rules.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Yang, G., Shen, Q. et al. Effect of polytetrafluoroethylene shedding on water and heat transport in the gas diffusion layer of proton exchange membrane fuel cells. Ionics 30, 1489–1501 (2024). https://doi.org/10.1007/s11581-024-05392-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05392-w

Keywords

Navigation