Skip to main content
Log in

The impact of mutual interactions between ZIFs-MWCNTs and hemoglobin molecule on electrocatalysis on hydrogen peroxide reduction of integrated heme protein

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This study proposes a composite consisting of zinc-heteroaromatic chemical framework material and hollow carbon-based material, designed to host hemoglobin. A heme protein-based electrode is developed using the complex with protein entrapment. The competitive coordination of heme protein with carbon-based carrier results in a novel intermediate with distinctive spectrometric and electrochemical features. The interaction between redox protein supporter and heme protein would give birth to the predominant influences the configuration of the cofactor within the protein. The article elucidates the role of the intermediate species in heme protein-induced electrocatalysis. Two simultaneous redox processes occur on the heme protein-based electrode. The intermediate species exhibits the favorable heterogeneous electron transfer dynamics (the normalized rate constant: 4.2 s−1). The analysis in the enzyme-involved electro-catalysis suggests that the substrate diffusion dominates the sensing efficiency of the electrochemical sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data to support the findings of the investigation are available on request from the corresponding author, Han ZENG, upon reasonable request.

References

  1. Sun X, Chen YL, Xie Y, Wang L, Wang Y, Hu XY (2020) Preparation of a chemically stable metal-organic framework and multi-walled carbon nanotube composite as a high-performance electrocatalyst for the detection of lead. Analyst 145:1833–1840. https://doi.org/10.1039/C9AN02299F

    Article  CAS  PubMed  Google Scholar 

  2. Maduraiveeran G, Jin W (2020) 12-Functional nanomaterial-derived electrochemical sensor and biosensor platforms for biomedical applications, in: C. M. Hussain(Eds.), Handb Nanomater Anal Chem, pp. 297–327. https://doi.org/10.1016/B978-0-12-816699-4.00012-8

  3. Emran MY, El-Safty SA, Elmarakbi A, Reda A, Sabagh AE, Shenashen MA (2022) Chipset nanosensor based on N-doped carbon nanobuds for selective screening of epinephrine in human samples. Adv Mater Interfaces 9:2101473. https://doi.org/10.1002/admi.202101473

    Article  CAS  Google Scholar 

  4. Emran MY, Shenashen MA, Elmarakbi A, Selim MM, El-Safty SA (2021) Nitrogen-doped carbon hollow trunk-like structure as a portable electrochemical sensor for noradrenaline detection in neuronal cells. Anal Chim Acta 1192:339380. https://doi.org/10.1016/j.aca.2021.339380

    Article  CAS  PubMed  Google Scholar 

  5. Emran MY, Talat E, El-Safty SA, Shenashen MA, Saad EM (2021) Influence of hollow sphere surface heterogeneity and geometry of N-doped carbon on sensitive monitoring of acetaminophen in human fluids and pharmaceutical products. New J Chem 45:5452–5462. https://doi.org/10.1039/D0NJ05442A

    Article  CAS  Google Scholar 

  6. Emran MY, Shenashen MA, El-Safty SA, Reda A, Selim MM (2021) Microporous P-doped carbon spheres sensory electrode for voltammetry and amperometry adrenaline screening in human fluids. Microchim Acta 188:1–11. https://doi.org/10.1007/s00604-021-04782-5

    Article  CAS  Google Scholar 

  7. Emran MY, Shenashen MA, El-Safty SA, Selim MM (2021) Design of porous S-doped carbon nanostructured electrode sensor for sensitive and selective detection of guanine from DNA samples. Microporous Mesoporous Mater 320:111097. https://doi.org/10.1016/j.micromeso.2021.111097

    Article  CAS  Google Scholar 

  8. Zhao L, Niu GM, Gao FC, Lu KD, Sun ZW, Li H, Stenzel M, Liu C, Jiang YY (2021) Gold nanorods (AuNRs) and zeolitic imidazolate framework-8 (ZIF-8) core-shell nanostructure-based electrochemical sensor for detecting neurotransmitters. ACS Omega 6:33149–33158. https://doi.org/10.1021/acsomega.1c05529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feizollahi A, Rafati AA, Assari P, Joghani RA (2021) Development of an electrochemical sensor for the determination of antibiotic sulfamethazine in cow milk using graphene oxide decorated with Cu-Ag core-shell nanoparticles. Anal Methods 13:910–917. https://doi.org/10.1039/D0AY02261F

    Article  CAS  PubMed  Google Scholar 

  10. Chen WL, Dai YM, Huang BS, Lai GH, Tsai MH (2021) Preparation and electrochemical sensor application of tetra aniline/graphene oxide/gold nanoparticle composites. Colloids Surf, A 627:127110. https://doi.org/10.1016/j.colsurfa.2021.127110

    Article  CAS  Google Scholar 

  11. Kaleem S, Mehmood S, Chaudhry M, Ali A, Bhopal MF, Bhatti AS (2021) Ultrasensitive electrochemical detection of digoxin using graphite oxide and Au-NPs composites. Sens Actuators, A 318:112489. https://doi.org/10.1016/j.sna.2020.112489

    Article  CAS  Google Scholar 

  12. Baghayeri M, Amiri A, Fayazi M, Nodehi M, Esmaeelnia A (2021) Electrochemical detection of bisphenol a on a MWCNTs/CuFe2O4 nanocomposite modified glassy carbon electrode. Mater Chem Phys 261:124247. https://doi.org/10.1016/j.matchemphys.2021.124247

    Article  CAS  Google Scholar 

  13. Uwaya GE, Fayemi OE (2021) Electrochemical detection of choline at f-MWCNT/Fe3O4 nanocomposite modified glassy carbon electrode. Mater Res Express 8:055403. https://doi.org/10.1088/2053-1591/abf713

    Article  CAS  Google Scholar 

  14. Tursynbolat S, Bakytkarim Y, Huang JZ, Wang LS (2018) Ultrasensitive electrochemical determination of metronidazole based on polydopamine/carboxylic multi-walled carbon nanotubes nanocomposites modified GCE. J Pharm Anal 8:124–130. https://doi.org/10.1016/j.jpha.2017.11.001

    Article  PubMed  Google Scholar 

  15. Kumar M, Swamy BEK, Reddy S, Zhao W, Chetana S, Kumar VG (2019) ZnO/functionalized MWCNT and Ag/functionalized MWCNT modified carbon paste electrodes for the determination of dopamine, paracetamol and folic acid. J Electroanal Chem 835:96–105. https://doi.org/10.1016/j.jelechem.2019.01.019

    Article  CAS  Google Scholar 

  16. Goncalves JM, Martins PR, Rocha DP, Matias TA, Juliao MSS, Munoz RAA, Angnes L (2021) Recent trends and perspectives in electrochemical sensors based on ZIFs-derived materials. J Mater Chem, C 9:8718–8745. https://doi.org/10.1039/D1TC02025K

    Article  CAS  Google Scholar 

  17. Li GH, Liu S, Liu DL, Zhang N (2021) MOF-derived porous nanostructured Ni2P/C material with highly sensitive electrochemical sensor for uric acid. Inorg Chem Commun 130:108713. https://doi.org/10.1016/j.inoche.2021.108713

    Article  CAS  Google Scholar 

  18. Zhang J, Gao LL, Zhang YJ, Guo RH, Hu TP (2021) A heterometallic sensor based on Ce@Zn-ZIFs for electrochemical recognition of uric acid. Microporous Mesoporous Mater 322:111126. https://doi.org/10.1016/j.micromeso.2021.111126

    Article  CAS  Google Scholar 

  19. Kajal N, Singh V, Gupta R, Gautam S (2022) Metal organic frameworks for electrochemical sensor applications: a review. Environ Res 204:112320. https://doi.org/10.1016/j.envres.2021.112320

    Article  CAS  PubMed  Google Scholar 

  20. Peng SJ, Liu JS, Qin Y, Wang H, Cao BL, Lu LG, Yu XR (2019) Metal-organic framework encapsulating hemoglobin as a high-stable and long-circulating oxygen carriers to treat hemorrhagic shock. ACS Appl Mater Interfaces 11:35604–35612. https://doi.org/10.1021/acsami.9b15037

    Article  CAS  PubMed  Google Scholar 

  21. Chen GS, Huang SM, Kou XX, Wei SB, Huang SY, Jiang SQ, Shen J, Zhu F, Ouyang GF (2019) A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal-organic frameworks. Angew Chem Int Ed 58:1463–1467. https://doi.org/10.1002/anie.201813060

    Article  CAS  Google Scholar 

  22. Feng YX, Zhong L, Bilal M, Tan ZL, Hou Y, Jia SR, Cui JD (2018) Enzymes@ZIF-8 Nanocomposites with protection nanocoating: stability and acid-resistant evaluation. Polym 11:27. https://doi.org/10.3390/polym11010027

    Article  CAS  Google Scholar 

  23. Liu GJ, Wang LM, Zhu FW, Liu Q, Feng YH, Zhao XY, Chen M, Chen XQ (2022) Facile construction of a reusable multi-enzyme cascade bioreactor for effective fluorescence discrimination and quantitation of amino acid enantiomers. Chem Eng J 428:131975. https://doi.org/10.1016/j.cej.2021.131975

    Article  CAS  Google Scholar 

  24. Deng ZX, Tao JW, Zhao LJ, Zhang W, Wang YB, Mu HJ, Wu HJ, Xu XX, Zheng W (2020) Effect of protein adsorption on bioelectrochemistry of electrospun core-shell MWCNTs/gelatin-Hb nanobelts on electrode surface. Process Biochem 96:73–79. https://doi.org/10.1016/j.procbio.2020.05.031

    Article  CAS  Google Scholar 

  25. Kang ZP, Jiao KL, Cheng J, Peng RY, Jiao SQ, Hu ZQ (2018) A novel three-dimensional carbonized PANI1600@CNTs network for enhanced enzymatic biofuel cell. Biosens Bioelectron 101:60–65. https://doi.org/10.1016/j.bios.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  26. Olloqui-Sariego JL, Calvente JJ, Andreu R (2021) Immobilizing redox enzymes at mesoporous and nanostructured electrodes. Curr Opin Electrochem 26:100658. https://doi.org/10.1016/j.coelec.2020.100658

    Article  CAS  Google Scholar 

  27. Feng Y, Zhao YT, Ge J (2021) Impact of the size effect on enzymatic electrochemical detection based on metal-organic frameworks. Anal Chim Acta 1149:238191. https://doi.org/10.1016/j.aca.2020.12.066

    Article  CAS  PubMed  Google Scholar 

  28. Wang X, Xu YW, Li YH, Li YX, Li ZH, Zhang W, Zou XB, Shi JY, Huang XW, Liu C, Li WT (2021) Rapid detection of cadmium ions in meat by a multi-walled carbon nanotubes enhanced metal-organic framework modified electrochemical sensor. Food Chem 357:129762. https://doi.org/10.1016/j.foodchem.2021.129762

    Article  CAS  PubMed  Google Scholar 

  29. Ma L, Wei ZQ, Huang AM, Yang H, He WR, Lin RS (2009) Spectroscopic studies on the influence of urea on the conformation of hemoglobin in aqueous solutions. Acta Phys -Chim Sin 25:1816–1822. https://doi.org/10.3866/PKU.WHXB20090920. (In Chinese)

    Article  CAS  Google Scholar 

  30. Chen YT, Wang F, Zhang M, Zeng H (2022) The catalytic effect on H2O2 electro-reduction of an electrode based on MOF Material ZIF-8 as hemoglobin supporter via hydrogen bond interaction. J Electron Mater 51:4493–4508. https://doi.org/10.1007/s11664-022-09654-z

    Article  CAS  Google Scholar 

  31. Lian XZ, Fang Y, Joseph E, Wang Q, Li JL, Banerjee S, Lollar C, Wang X, Zhou HC (2017) Enzyme-ZIFs (metal-organic framework) composites. Chem Soc Rev 46:3386–3401. https://doi.org/10.1039/C7CS00058H

    Article  CAS  PubMed  Google Scholar 

  32. Qin DF, Li TH, Li XN, Feng J, Tang TF, Cheng H (2021) A facile fabrication of a hierarchical ZIF-8/MWCNT nanocomposite for the sensitive determination of rutin. Anal Methods 13:5450–5457. https://doi.org/10.1039/D1AY01421H

    Article  CAS  PubMed  Google Scholar 

  33. Yan Y, Bo XJ, Guo LP (2020) ZIF-818 metal-organic framework-reduced graphene oxide/multiwalled carbon nanotubes composite for electrochemical sensitive detection of phenolic acids. Talanta 218:121123. https://doi.org/10.1016/j.talanta.2020.121123

    Article  CAS  PubMed  Google Scholar 

  34. Rani S, Sharma B, Malhotra R, Kumar S, Varma RS, Dilbaghi N (2020) Sn-ZIFs@CNT nanocomposite: an efficient electrochemical sensor for detection of hydrogen peroxide. Environ Res 191:110005. https://doi.org/10.1016/j.envres.2020.110005

    Article  CAS  PubMed  Google Scholar 

  35. Sheikholeslam M, Nanda P, Pritzker M, Chen P (2020) Immobilization, direct electrochemistry and electrocatalysis of hemoglobin on peptide-carbon nanotube modified electrode. bioRxiv 6:153767. https://doi.org/10.1101/2020.06.16.153767

    Article  Google Scholar 

  36. Andreu R, Ferapontova EE, Gorton L, Calvente JJ (2007) Direct electron transfer kinetics in horseradish peroxidase electrocatalysis. J Phys Chem B 111:469–477. https://doi.org/10.1021/jp064277i

    Article  CAS  PubMed  Google Scholar 

  37. Mazzei F, Favero G, Frasconi M, Tata A, Pepi F (2009) Electron-transfer kinetics of microperoxidase-11 covalently immobilised onto the surface of multi-walled carbon nanotubes by reactive landing of mass-selected ions. Chem Eur J 15:7359–7367. https://doi.org/10.1002/chem.200900887

    Article  CAS  PubMed  Google Scholar 

  38. Jeuken LJC, McEvoy JP, Armstrong FA (2002) Insights into gated electron-transfer kinetics at the electrode-protein interface: a square wave voltammetry study of the blue copper protein azurin. J Phys Chem B 106:2304–2313. https://doi.org/10.1021/jp0134291

    Article  CAS  Google Scholar 

  39. Yang Y, Huo WS, Zhou Z, Zhang Q, Zeng H (2016) Direct electrochemistry of electrode modified with thin film of laccase immobilized in nano-composite of polyaniline-CoC2O4. Chin J Inorg Chem 32:2117–2128. https://doi.org/10.11862/CJIC.2016.277. (in Chinese)

  40. Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253–1256. https://doi.org/10.1126/science.280.5367.1253

    Article  CAS  PubMed  Google Scholar 

  41. Ma BK, Cheong LZ, Weng XC, Tan CP, Cai S (2018) Lipase@ZIF-8 nanoparticles-based biosensor for direct and sensitive detection of methyl parathion. Electrochim Acta 283:509–516. https://doi.org/10.1016/j.electacta.2018.06.176

    Article  CAS  Google Scholar 

  42. Chu XQ, Zhang M, Huo WS, Zeng H, Yang Y (2020) 2-hydroxy-4-amino-azobenzene modified graphene oxide with incorporation of bilirubin oxidase for photoelectrochemical catalysis of oxygen reduction reaction. Int J Electrochem Sci 15:11531–11554. https://doi.org/10.20964/2020.11.46

    Article  CAS  Google Scholar 

  43. Qiu HJ, Xu CX, Huang XR, Ding Y, Qu YB, Gao PJ (2009) Immobilization of laccase on nanoporous gold: comparative studies on the immobilization strategies and the particle size effects. J Phys Chem C 113:2521–2525. https://doi.org/10.1021/jp8090304

    Article  CAS  Google Scholar 

  44. Yue YF, Guo BK, Qiao ZA, Fulvio PF, Chen JH, Binder AJ, Tian CC, Dai S (2014) Multi-wall carbon nanotube@zeolite imidazolate framework composite from a nanoscale zinc oxide precursor. Microporous Mesoporous Mater 198:139–143. https://doi.org/10.1016/j.micromeso.2014.07.026

    Article  CAS  Google Scholar 

  45. Xu JW, Ma TM, Zhang M, Zeng H (2021) Electro-catalysis on H2O2 reduction of electrode capped by nanotubes-polypyrrole composite with hemoglobin integration. J Mater Sci: Mater Electron 32:6064–6079. https://doi.org/10.1007/s10854-021-05326-6

    Article  CAS  Google Scholar 

  46. Jafari N, Zeinali S (2020) Highly rapid and sensitive formaldehyde detection at room temperature using a ZIF-8/MWCNT nanocomposite. ACS Omega 5:4395–4402. https://doi.org/10.1021/acsomega.9b03124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chaudhary K, Dhiman D, Venkatesu P, Masram DT (2022) Classically synthesized ZIF-8 and Au/ZIF-8 for biocompatibility assessment with hemoglobin. ACS Sustainable Chem Eng 10:12962–12967. https://doi.org/10.1021/acssuschemeng.2c04467

    Article  CAS  Google Scholar 

  48. Chen W, Niu XL, Li XY, Li XB, Li GJ, He BL, Li QT, Sun W (2017) Investigation on direct electrochemical and electrocatalytic behavior of hemoglobin on palladium-graphene modified electrode. Mater Sci Eng, C 80:135–140. https://doi.org/10.1016/j.msec.2017.05.129

    Article  CAS  Google Scholar 

  49. Weng WJ, Liu J, Yin CX, Xie H, Luo GL, Sun W, Li GJ (2019) Electrochemical biosensor based on hemoglobin and titanate nanotubes modified electrode and its application. Int J Electrochem Sci 14:4309–4317. https://doi.org/10.20964/2019.05.60.

    Article  CAS  Google Scholar 

  50. Zeng X, Huang LQ, Wang CN, Wang JS, Li JT, Luo XT (2016) Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect. ACS Appl Mater Interfaces 8:20274–20282. https://doi.org/10.1021/acsami.6b05746

    Article  CAS  PubMed  Google Scholar 

  51. Chen J, Guo YC, Kang TT, Liu XC, Wang XM, Zhang X (2021) In situ growth of ZIF-8 nanocrystals on the pore walls of 3D ordered macroporous TiO2 for a one-pot cascade reaction. Catalysts 11:533. https://doi.org/10.3390/catal11050533

    Article  CAS  Google Scholar 

  52. Jing YQ, Yin HF, Li CG, Chen JZ, Wu SJ, Liu H, Xie LW, Lei Q, Sun M, Yu SK (2022) Fabrication of Pt doped TiO2–ZnO@ZIF-8 core@shell photocatalyst with enhanced activity for phenol degradation. Environ Res 203:111819. https://doi.org/10.1016/j.envres.2021.111819

    Article  CAS  PubMed  Google Scholar 

  53. Mao H, Cai BF, Zhao B, Wang ZW (2009) Molecular simulation and spectroscopic studies of interactions between sultan red II and myoglobin. Chin J Appl Chem 26:1332–1335. https://doi.org/10.3969/j.issn.1000-0518.2009.11.018.(inChinese)

    Article  CAS  Google Scholar 

  54. Jain V, Gurusamy T, Gayathri P, Ramanujam K (2020) Oxygen sensitive 1-amino-2-naphthol immobilized functionalized-carbon nanotube electrode. New J Chem 44:8849–8858. https://doi.org/10.1039/D0NJ00438C

    Article  CAS  Google Scholar 

  55. Xie H, Luo GL, Niu YY, Weng WJ, Zhao YX, Ling ZQ, Ruan CX, Li GJ, Sun W (2020) Synthesis and utilization of Co3O4 doped carbon nanofiber for fabrication of hemoglobin-based electrochemical sensor. Mater Sci Eng C 107:110209. https://doi.org/10.1016/j.msec.2019.110209

    Article  CAS  Google Scholar 

  56. Zhao HY, Zhou HM, Zhang JX, Zheng W, Zheng YF (2009) Carbon nanotube-hydroxyapatite nanocomposite: a novel platform for glucose/O2 biofuel cell. Biosens Bioelectron 25:463–468. https://doi.org/10.1016/j.bios.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  57. Shleev S, Christenson A, Serezhenkov V, Burbaev D, Yaropolov A, Gorton L, Ruzgas T (2005) Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode. Biochem J 385:745–754. https://doi.org/10.1042/BJ20041015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mao F, Mano N, Heller A (2003) Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme “wiring” hydrogels. J Am Chem Soc 125:4951–4957. https://doi.org/10.1021/ja029510e

    Article  CAS  PubMed  Google Scholar 

  59. Yao L, Chen K, Su B (2019) Unraveling mass and electron transfer kinetics at silica nanochannel membrane modified electrodes by scanning electrochemical microscopy. Anal Chem 91:15436–15443. https://doi.org/10.1021/acs.analchem.9b03044

    Article  CAS  PubMed  Google Scholar 

  60. Park JH, Song Z, Lee GY, Jeong SM, Kang MJ, Pyun JC (2019) Hypersensitive electrochemical immunoassays based on highly N-doped silicon carbide (SiC) electrode. Anal Chim Acta 1073:30–38. https://doi.org/10.1016/j.aca.2019.04.054

    Article  CAS  PubMed  Google Scholar 

  61. Coros M, Varodi C, Pogacean F, Gal E, Pruneanu SM (2020) Nitrogen-doped graphene: the influence of doping level on the charge-transfer resistance and apparent heterogeneous electron transfer rate. Sensors 20:1815. https://doi.org/10.3390/s20071815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kano K, Ikeda T (2000) Fundamentals and practices of mediated bioelectrocatalysis. Anal Sci 16:1013–1021. https://doi.org/10.2116/analsci.16.1013

    Article  CAS  Google Scholar 

  63. Qiu HJ, Xu CX, Huang XR, Ding Y, Qu YB, Gao PJ (2008) Adsorption of laccase on the surface of nanoporous gold and the direct electron transfer between them. J Phys Chem C 112:14781–14785. https://doi.org/10.1021/jp805600k

    Article  CAS  Google Scholar 

  64. Zhang Y, Zeng GM, Tang L, Huang DL, Jiang XY, Chen YN (2007) A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode. Biosens Bioelectron 22:2121–2126. https://doi.org/10.1016/j.bios.2006.09.030

    Article  CAS  PubMed  Google Scholar 

  65. Wu H, Huang DQ, Jin XY, Luo CH, Dong QJ, Sun BJ, Zong RM, Li JC, Zhang L, Zhang H (2016) Silver nanoparticles/polyethyleneimine/graphene oxide composite combined with surfactant film for construction of an electrochemical biosensor. Anal Methods 8:2961–2966. https://doi.org/10.1039/C6AY00377J

    Article  CAS  Google Scholar 

  66. Narwal V, Yadav N, Thakur M, Pundir CS (2017) An amperometric H2O2 biosensor based on hemoglobin nanoparticles immobilized onto a gold electrode. Biosci Rep 37:BSR20170194. https://doi.org/10.1042/BSR20170194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu L, Li XY, Deng Y, Zou RY, Shao B, Yan LJ, Ruan CX, Sun W (2021) Construction and electrochemical behavior of hemoglobin sensor based on ZnO doped carbon nanofiber modified electrode. J Iran Chem Soc 18:1027–1034. https://doi.org/10.1007/s13738-020-02088-6

    Article  CAS  Google Scholar 

  68. Xie H, Liu J, Yones HA, Niu YY, Zhao YX, Xi YR, Li XB, Li GJ, Sun W, Wang XH (2019) Fe3O4 Decorated reduced graphene oxide modified electrode for electrochemistry of hemoglobin and its application as trichloroacetic acid and nitrite sensor. Int J Electrochem Sci 14:9141–9149. https://doi.org/10.20964/2019.09.80

    Article  CAS  Google Scholar 

  69. Qian DP, Li WB, Chen FT, Huang Y, Bao N, Gu HY, Yu CM (2017) Voltammetric sensor for trichloroacetic acid using a glassy carbon electrode modified with Au@Ag nanorods and hemoglobin. Microchim Acta 184:1977–1985. https://doi.org/10.1007/s00604-017-2175-6

    Article  CAS  Google Scholar 

  70. Shleev S, Tkac J, Christenson A, Ruzgas T, Yaropolov AI, Whittaker JW, Gorton L (2005) Direct electron transfer between copper-containing proteins and electrodes. Biosens Bioelectron 20:2517–2554. https://doi.org/10.1016/j.bios.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  71. Sun KW, Wang F, Ma TM, Zeng H (2022) Investigation on impact of mutual interactions between elements of Ag nano-particle core-Z material shell nano-complex and incorporated hemoglobin on electro-catalysis on H2O2 electro-reduction. Chem Pap 76:2703–2719. https://doi.org/10.1007/s11696-022-02070-x

    Article  CAS  Google Scholar 

  72. Zhang SW, Zhang M, Wang F, Zeng H (2022) Direct electrochemistry and enzyme-involved photo-electrocatalysis of oxygen reduction for the electrode on the basis of titanium dioxide-graphene oxide nano-complex with laccase accommodation. Chem Eng J 430:132619. https://doi.org/10.1016/j.cej.2021.132619

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project is financially subsidized by the second batch of innovative environment construction projects of 2022 annual Xin-Jiang Uygur autonomous region natural science foundation general program (2022D01A209).

Funding

The second batch of Innovative Environment Construction Projects of 2022 annual Xin-Jiang Uygur Autonomous Region Natural Science Foundation General Program (2022D01A209).

Author information

Authors and Affiliations

Authors

Contributions

Shi Yu YING implements the additional supplements of experimental data to consolidate the conclusions in the manuscript. She also participates in the analysis to the electrochemical data and the main deduction in the submission. Xue Qing CHU provides most data of spectrometric and electrochemical experiments. She makes the relevant explanation. Han ZENG is responsible for the sections of the abstract and the conclusion. He contributes to the preparation of the whole framework in the main manuscript text and gets involved in the data analysis. all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Han Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4055 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, S.Y., Chu, X.Q. & Zeng, H. The impact of mutual interactions between ZIFs-MWCNTs and hemoglobin molecule on electrocatalysis on hydrogen peroxide reduction of integrated heme protein. Ionics 30, 2299–2312 (2024). https://doi.org/10.1007/s11581-024-05389-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05389-5

Keywords

Navigation