Skip to main content
Log in

Effect of Na-ion doping on the improved electrochemical performances of olivine structured LiNi1/3Mn1/3Co1/3PO4 for Li-ion hybrid capacitors

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Olivine structured materials (LiMPO4; M = Fe, Mn, Co, Ni) are promising for energy storage applications due to their appreciable electrochemical performance, stability, safety, and cost-effectiveness. However, the poor electronic and Li-ion conductivity is the primary drawback of such materials. Therefore, in the present study, the monovalent larger Na+ ion (0.098 nm) is doped in the Li+ (0.076 nm) site of LiNi1/3Mn1/3Co1/3PO4 using the sol–gel method to facilitate the smooth flow of Li+ ions during intercalation/de-intercalation by increasing unit cell volume. The X-ray diffraction pattern reveals that Li1-xNaxNi1/3Mn1/3Co1/3PO4 (x = 0, 0.025, 0.05, 0.1, and 0.15) are orthorhombic structures with the Pnma space group. The slight peak shift of the (311) plane towards lower degrees infers the increased d-spacing. The high-resolution transmission electron microscopic image corroborates that the prepared Li0.95Na0.05Ni1/3Mn1/3Co1/3PO4 particles are in size range of 150–200 nm. The EDX mapping confirms the uniform distribution of transition metals throughout the system. The observed redox peaks in the cyclic voltammogram suggest the Faradaic behavior of the electrodes in 1 M LiOH electrolyte. The calculated specific capacity of Li0.95Na0.05Ni1/3Mn1/3Co1/3PO4 is 117 C g−1 (32.4 mAh g−1) at 5 A g−1. The charge transfer resistance of Li0.95Na0.05Ni1/3Mn1/3Co1/3PO4 is substantially lower than the pristine LiNi1/3Mn1/3Co1/3PO4 electrode infers the higher ionic conductivity. The Li0.95Na0.05Ni1/3Mn1/3Co1/3PO4 || AC device delivered an energy density of 11.7 Wh kg−1 with a power density of 2400 W kg−1 @ 3 A g−1 and has appreciable stability over 2000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Sun J, Luo B, Li H (2022) A review on the conventional capacitors, supercapacitors, and emerging hybrid ion capacitors: past, present, and future. Adv Energy Sustain Res 3:2100191. https://doi.org/10.1002/aesr.202100191

    Article  Google Scholar 

  2. Amatucci GG, Badway F, Du Pasquier A, Zheng T (2001) An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc 148:A930–A939. https://doi.org/10.1149/1.1383553

    Article  CAS  Google Scholar 

  3. Zhang H, Zhang X, Zeng T et al (2023) Conversion of residual lithium into fast ionic conductor coating to achieve one-step double modification strategy in LiNi0.8Co0.15Al0.05O2. J Alloys Compd 931:167638. https://doi.org/10.1016/j.jallcom.2022.167638

    Article  CAS  Google Scholar 

  4. Liu Y, Zeng T, Li G et al (2022) The surface double-coupling on single-crystal LiNi0.8Co0.1Mn0.1O2 for inhibiting the formation of intragranular cracks and oxygen vacancies. Energy Storage Mater 52:534–546. https://doi.org/10.1016/j.ensm.2022.08.026

    Article  Google Scholar 

  5. Priyadharsini N, Shanmugapriya S, Kasturi PR et al (2018) Morphology-dependent electrochemical properties of sol-gel synthesized LiCoPO4 for aqueous hybrid capacitors. Electrochim Acta 289:516–526. https://doi.org/10.1016/j.electacta.2018.08.086

    Article  CAS  Google Scholar 

  6. Tolganbek N, Yerkinbekova Y, Kalybekkyzy S et al (2021) Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: A review. J Alloys Compd 882:160774. https://doi.org/10.1016/j.jallcom.2021.160774

    Article  CAS  Google Scholar 

  7. Zhang J, Luo SH, Ren QX et al (2020) Tailoring the sodium doped LiMnPO4/C orthophosphate to nanoscale as a high-performance cathode for lithium ion battery. Appl Surf Sci 530:146628. https://doi.org/10.1016/j.apsusc.2020.146628

    Article  CAS  Google Scholar 

  8. Wang B, Wang Y, Wu H et al (2017) Ultrafast and durable lithium storage enabled by porous bowl-like LiFePO4/C composite with Na+ doping. ChemElectroChem 4:1141–1147. https://doi.org/10.1002/celc.201600854

    Article  CAS  Google Scholar 

  9. Li J, Luo Sh, Sun Y et al (2019) Li0.95Na0.05MnPO4/C nanoparticles compounded with reduced graphene oxide sheets for superior lithium ion battery cathode performance. Ceram Int 45:4849–4856. https://doi.org/10.1016/j.ceramint.2018.11.181

    Article  CAS  Google Scholar 

  10. Shen Y, Liu S, Liu H, Zhao H (2023) Single-source realization of Na-doped and carbon-coated LiMnPO4 nanocomposite for enhanced performance of Li-ion batteries. J Solid State Electrochem 27:1055–1060. https://doi.org/10.1007/s10008-022-05354-0

    Article  CAS  Google Scholar 

  11. Liu Y, Qin W, Zhang D et al (2021) Effect of Na+ in situ doping on LiFePO4/C cathode material for lithium-ion batteries. Prog Nat Sci Mater Int 31:14–18. https://doi.org/10.1016/j.pnsc.2020.10.006

    Article  CAS  Google Scholar 

  12. El Khalfaouy R, Addaou A, Laajeb A, Lahsini A (2019) Synthesis and characterization of Na-substituted LiMnPO4 as a cathode material for improved lithium ion batteries. J Alloys Compd 775:836–844. https://doi.org/10.1016/j.jallcom.2018.10.161

    Article  CAS  Google Scholar 

  13. Rajammal K, Sivakumar D, Duraisamy N et al (2017) Na-doped LiMnPO4 as an electrode material for enhanced lithium ion batteries. Bull Mater Sci 40:171–175. https://doi.org/10.1007/s12034-017-1365-5

    Article  CAS  Google Scholar 

  14. Xin XD, Li HJ, Chang QQ, Lou WW (2012) Preparation and investigation on lattice distortion and electrochemical performances of Li0.95Na0.05FePO4/C. Chinese J Chem Phys 25:429–433. https://doi.org/10.1088/1674-0068/25/04/429-433

    Article  CAS  ADS  Google Scholar 

  15. Madram AR, Faraji M (2017) Site-dependent electrochemical performance of Na and K co-doped LiFePO4/C cathode material for lithium-ion batteries. New J Chem 41:12190–12197. https://doi.org/10.1039/c7nj01872j

    Article  CAS  Google Scholar 

  16. Zhang H, Wang X, Naveed A et al (2022) Comparison of structural and electrochemical properties of LiNi0.8Co0.15Al0.05O2 with Li site doping by different cations. Appl Surf Sci 599:153933. https://doi.org/10.1016/j.apsusc.2022.153933

    Article  CAS  Google Scholar 

  17. Liu Y, Liu D, Wu HH et al (2018) Improved cycling stability of Na-Doped cathode materials Li1.2Ni0.2Mn0.6O2 via a facile synthesis. ACS Sustain Chem Eng 6:13045–13055. https://doi.org/10.1021/acssuschemeng.8b02552

    Article  CAS  Google Scholar 

  18. Liu Q, Wen D, Yu X, Jiang H (2023) Effect of Na-Si co-doping on the performance of LiFePO4. J Electroanal Chem 950:117891. https://doi.org/10.1016/j.jelechem.2023.117891

  19. Li R, Fan C, Zhang W et al (2019) Structure and performance of Na+ and Fe2+ co-doped Li1-xNaxMn0.8Fe0.2PO4/C nanocapsule synthesized by a simple solvothermal method for lithium ion batteries. Ceram Int 45:10501–10510. https://doi.org/10.1016/j.ceramint.2019.02.112

    Article  CAS  Google Scholar 

  20. Yang X, Hu Z, Liang J (2015) Effects of sodium and vanadium co-doping on the structure and electrochemical performance of LiFePO4/C cathode material for lithium-ion batteries. Ceram Int 41:2863–2868. https://doi.org/10.1016/j.ceramint.2014.10.108

    Article  CAS  Google Scholar 

  21. Zhang J, Luo S, Ren Q et al (2021) Preparation and electrochemical performance of Na+ and Co2+. Ionics (Kiel) 27:3251–3257

    Article  CAS  Google Scholar 

  22. Han CC, Yao X, Tian H et al (2021) Synthesis and electrochemical behavior of Na+ and Zr4+ doped LiMnPO4/C as potential cathode material for Li-ion batteries. Int J Electrochem Sci 16:1–10. https://doi.org/10.20964/2021.07.69

    Article  CAS  Google Scholar 

  23. Shen Y, Yao X, Zhang J et al (2022) Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage. Nano Energy 94:106900. https://doi.org/10.1016/j.nanoen.2021.106900

    Article  CAS  Google Scholar 

  24. Yin X, Huang K, Liu S et al (2010) Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. J Power Sources 195:4308–4312. https://doi.org/10.1016/j.jpowsour.2010.01.019

    Article  CAS  Google Scholar 

  25. Muñoz-García AB, Tirri B, Capone I et al (2020) Structural evolution of disordered LiCo1/3Fe1/3Mn1/3PO4 in lithium batteries uncovered. J Mater Chem A 8:19641–19653. https://doi.org/10.1039/d0ta05350c

    Article  CAS  Google Scholar 

  26. Priyadharsini N, Surendran S, Senthilkumar B et al (2019) Synthesis and electrochemical performances of γ-KCoPO4 Nanocrystals as promising electrode for aqueous supercapatteries. ChemElectroChem 6:369–377. https://doi.org/10.1002/celc.201801440

    Article  CAS  Google Scholar 

  27. Vignesh K, Ganeshbabu M, Naga NP et al (2023) Oxygen-rich functionalized porous carbon by KMnO4 activation on pods of Prosopis juliflora for symmetric supercapacitors. J Energy Storage 72:108216. https://doi.org/10.1016/j.est.2023.108216

    Article  Google Scholar 

  28. Mandal D, Bharti L, Biswas S, Chandra A (2023) Graphene decorated LiMn2O4 electrode material for hybrid type energy storage devices. Energy Storage 5:e373. https://doi.org/10.1002/est2.373

    Article  CAS  Google Scholar 

  29. Priyadharsini N, Shanmugavani A, Surendran S et al (2018) Improved electrochemical performances of LiMnPO4 synthesized by a hydrothermal method for Li-ion supercapatteries. J Mater Sci Mater Electron 29:18553–18565. https://doi.org/10.1007/s10854-018-9972-5

    Article  CAS  Google Scholar 

  30. Priyadharsini N, Rupa Kasturi P, Shanmugavani A et al (2018) Effect of chelating agent on the sol-gel thermolysis synthesis of LiNiPO4 and its electrochemical properties for hybrid capacitors. J Phys Chem Solids 119:183–192. https://doi.org/10.1016/j.jpcs.2018.03.004

    Article  CAS  ADS  Google Scholar 

  31. Senthilkumar B, Sankar KV, Vasylechko L et al (2014) Synthesis and electrochemical performances of maricite-NaMPO4 (M = Ni Co, Mn) electrodes for hybrid supercapacitors. RSC Adv 4:53192–53200. https://doi.org/10.1039/c4ra06050d

    Article  CAS  ADS  Google Scholar 

  32. Minakshi M, Meyrick D, Appadoo D (2013) Maricite (NaMn1/3Ni1/3Co1/3PO4)/activated carbon: hybrid capacitor. Energy Fuels 27:3516–3522. https://doi.org/10.1021/ef400333s

    Article  CAS  Google Scholar 

Download references

Funding

One of the authors, Dr.RKS would like to thank Tamil Nadu State Council for Higher Education (RGP/2019–20/BU/HECP-0008) for providing financial assistance to carry out this research work. The authors also acknowledge the HRTEM facility, Central Instrumentation Center (CIC), Bharathiar University, supported by the DST-PURSE Phase-II program.

Author information

Authors and Affiliations

Authors

Contributions

M.Ganeshbabu: Conceptualization, Data curation, Formal analysis, Methodology, Investigation, Writing –original draft.

N.Prasanna Naga Puneeth: Investigation.

R.Kalai Selvan: Conceptualization, Formal analysis, Writing – reviewing and editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to R. Kalai Selvan.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 667 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganeshbabu, M., Puneeth, N.P.N. & Selvan, R.K. Effect of Na-ion doping on the improved electrochemical performances of olivine structured LiNi1/3Mn1/3Co1/3PO4 for Li-ion hybrid capacitors. Ionics 30, 1669–1676 (2024). https://doi.org/10.1007/s11581-024-05377-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05377-9

Keywords

Navigation