Skip to main content
Log in

Construction of three-dimensional Sb2S3@MoS2/C heterostructure nanorod for high-rate supercapacitors

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Heterostructure composites have gained prominence for potential energy storage applications. Here, we synthesized a nanorod-like core–shell heterostructure supercapacitor electrode material, denoted as Sb2S3@MoS2/C, using a facile hydrothermal method. Impressively, this Sb2S3/MoS2/C heterostructure demonstrated superior electrochemical performance compared to pure Sb2S3 nanorods, exhibiting a high capacitance of 226 F g−1 at 1 A g−1. Remarkably, this capacity stability remained at 83.5% even after 10,000 cycles at current densities up to 10 A g−1. This enhanced performance arises from the core–shell structure, allowing increased active sites. The outer shell effectively prevents the bulk deformation of Sb2S3, while the inner core hinders the collapse of lamellar MoS2 during charge–discharge process. As a result, this core–shell configuration enables a more rapid ion transport and maintains a stable structure, thereby contributing to the enhanced electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Lee KS, Seo YJ, Jeong HT (2021) Capacitive behavior of functionalized activated carbon-based all-solid-state supercapacitor. Carbon Lett 31:1041–1049

    Article  Google Scholar 

  2. Zhao B, Chen D, Xiong X, Bo S, Liu M (2017) A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes. Energy Storage Mater 7:32–39

    Article  Google Scholar 

  3. Xue Y, Zhang Y, Yang R, Zhang K, Qin A, Chen S, Wu L (2020) In-situ synthesis of KCu7S4 nanowires array on nickel foam for high performance supercapacitor. Funct Mater Lett 14:2151005–2151012

    Article  Google Scholar 

  4. Liao M, Sun H, Zhang H, Wu J, Xie S, Fu X, Sun X, Wang B, Peng H (2018) Multicolor, fluorescent supercapacitor fiber. Small 14:1702052–1702057

    Article  Google Scholar 

  5. Hui P, Li J, Yuan PF (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5:654–668

    Article  Google Scholar 

  6. Wen Y, Mei N, Xin R, Tian Y, Zhang X (2015) Graphene in supercapacitor applications. Curr Opin Colloid In 20:416–428

    Article  Google Scholar 

  7. Elashnikov R, Trelin A, Tulupova A, Miliutina E, Zahorjanová K, Ulbrich P, Tomecek D, Fitl P, Švorcí̌k V, Lyutakov O (2021) Switchable PNIPAm/PPyNT hydrogel for smart supercapacitors: External control of capacitance for pulsed energy generation or prolongation of discharge time. ACS Appl Mater Inter 13:48030–48039

    Article  CAS  Google Scholar 

  8. Dotelli G, Ferrero R, Stampino PG, Latorrata S, Toscani S (2016) Supercapacitor sizing for fast power dips in a hybrid supercapacitor-pem fuel cell system. IEEE T Instrum Meas 65:2196–2203

    Article  CAS  Google Scholar 

  9. Sun J, Wang W, Yu D (2019) NiCo2O4 nanosheet-decorated carbon nanofiber electrodes with high electrohcemical performance for flexible supercapacitors. J Electron Mater 48:3833–3843

    Article  CAS  Google Scholar 

  10. Prabhu S, Gowdhaman A, Harish S, Navaneetham M, Ramesh R (2021) Synthesis of petal-like CoMoO4/r-GO composites for high performances hybrid supercapacitor. Mater Lett 295:129821–129826

    Article  CAS  Google Scholar 

  11. Soni S, Pareek K, Jangid DK, Rohan R (2020) Carbon cloth-MnO2 nanotube composite for flexible supercapacitor. Energy Storage 2:189–195

    Article  Google Scholar 

  12. Raman V, Mohan NV, Balakrishnan B, Rajmohan R, Rajangam V, Selvaraj A, Kim HJ (2020) Porous shiitake mushroom carbon composite with NiCo2O4 nanorod electrochemical characteristics for efficient supercapacitor applications. Ionics 26:345–354

    Article  CAS  Google Scholar 

  13. Lin S, Yu L, Ming Y, Yang Q, Liu X, Shi W (2022) Lewis acid etched NixCo1-xSe2 derived from ZIF-L on CoO nanowires for hybrid-supercapacitors. Chem Eng J 431:133472–133485

    Article  Google Scholar 

  14. Tang W, Zhang Y, Zhong W, Aslam MK, Guo B, Bao S, Xu M (2019) A labyrinth-like network electrode design for lithium–sulfur batteries. Nanoscale 11:14648–14653

    Article  CAS  PubMed  Google Scholar 

  15. Niu SF, Zheng JH (2018) Mo2S3@Ni3S2 nanowries on nickel foam as a highly-stable supercapacitor material. J Alloy Compd 737:809–814

    Article  CAS  Google Scholar 

  16. Hu L, Gao Y, Xiong T, Adekoya D, Qiu W, Yang H, Balogun M, Zhang S, Pan A, Li Y, Tong Y (2019) Surface functionalized 3d carbon fiber boosts the lithium storage behaviour of transition metal oxide nanowires via strong electronic interaction and tunable adsorption energy. Nanoscale Horizons 4:1402–1410

    Article  CAS  Google Scholar 

  17. Wasinski K, Walkowiak M, Polrolniczak P, Lota G (2015) Capacitance of Fe3O4/rGO nanocomposites in an aqueous hybrid electrochemical storage device. J Power Sources 293:42–50

    Article  CAS  Google Scholar 

  18. Zhu L, Song ZP, Ran Li, Zhu H (2022) Hot carrier dynamics in MoS2/WS2 heterostructure. Nanotechnology 33:195701

    Article  Google Scholar 

  19. Chen HY, Wan TQ, Zhou Y, Yan JM, Chen CS, Xu ZH, Zhang SG, Zhu Y, Yu hy, Chai Y (2023) Highly Nonlinear Memory Selectors with Ultrathin MoS2/WSe2/MoS2 Heterojunction. Adv Funct Mater 202304242

  20. Dong YR, Jiang H, Deng ZN, Hu YJ, Li CZ (2018) Synthesis and assembly of three-dimensional MoS2/rGO nanovesicles for high-performance lithium storage. Chem Eng J 350:1066–1072

    Article  CAS  Google Scholar 

  21. Yang CH, Liang XH, Ou X, Zhang QB, Zheng HS, Zheng FH, Wang JH, Huang KV, Liu ML (2019) Heterostructured Nanocube-Shaped Binary Sulfide (SnCo)S2 Interlaced with S-Doped Graphene as a High-Performance Anode for Advanced Na+ Batteries. Adv Funct Mater 29:201807971

    Google Scholar 

  22. Wang J, Zhang Q, Li X, Xu D, Wang Z, Guo H, Zhang K (2014) Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 6:19–26

    Article  CAS  Google Scholar 

  23. Tobis M, Sroka S, Frąckowiak E (2021) Supercapacitor with Carbon/MoS2 Composites. Front Energy Res 209:647878–647888

    Article  Google Scholar 

  24. Zhang Z, Zhao J, Xu M, Wang H, Gong Y, Xu J (2018) Facile synthesis of Sb2S3/MoS2 heterostructure as anode material for sodium-ion batteries. Nanotechnology 29:335401–335408

    Article  PubMed  Google Scholar 

  25. Molaei P, Kazeminezhad I (2018) Extended photocurrent performance of antimony trisulfide/reduced graphene oxide composite prepared via a facile hot-injection route. Ceram Int 44:13191–13196

    Article  CAS  Google Scholar 

  26. Palanisamy R, Karuppiah D, Venkatesan S, Mani S, Kuppusamy M, Marimuthu S, Karuppanan A, Govindaraju R, Marimuthu S, Rengapillai S, Abdollahifar M, Anbalagan AK, Perumalsamy R (2022) High-performance asymmetric supercapacitor fabricated with a novel MoS2/Fe2O3/Graphene composite electrode. Solid State Sci 46:100573–100578

    CAS  Google Scholar 

  27. Ma Q, Cui F, Zhang J, Qi X, Cui T (2022) Surface engineering of Co3O4 nanoribbons forming abundant oxygen-vacancy for advanced supercapacitor. Appl Surf Sci 578:152001–152010

    Article  CAS  Google Scholar 

  28. Sahoo R, Singh S, Yun J, Kwon S, Kim K (2019) Sb2S3 nanoparticles anchored or encapsulated by the sulfur-doped carbon sheet for high-performance supercapacitors. ACS Appl Mater Interfaces 11:33966–33977

    Article  CAS  PubMed  Google Scholar 

  29. Reddy BN, Deepa M, Joshi AG (2014) Highly conductive poly (3,4-ethylenedioxypyrrole) and poly (3,4-ethylenedioxythiophene) enwrapped Sb2S3 nanorods for flexible supercapacitors. Phys Chem Chem Phys 16:2062–2071

    Article  CAS  PubMed  Google Scholar 

  30. Zou Y, Chen C, Sun Y, Gan S, Rong J (2021) Flexible, all-hydrogel supercapacitor with self-healing ability. Chem Eng J 418:128616–128627

    Article  CAS  Google Scholar 

  31. Sankapal B, Gajare HB, Karade SS, Dubal DP (2015) Dubal, Anchoring cobalt oxide nanoparticles on to the surface multiwalled carbon nanotubes for improved supercapacitive performances. RSC Adv 5:48426–48432

    Article  CAS  Google Scholar 

  32. Govindan R, Hong XJ, Sathishkumar P, Cai YP, Gu FL (2020) Construction of metal-organic framework-derived CeO2 integrated MoS2 hybrid for high-performance asymmetric supercapacitor. Electrochim Acta 353:136502–136513

    Article  CAS  Google Scholar 

  33. Yan SX, Luo SH, Feng J, Li PW, Guo R, Wang Q (2020) Rational design of flower-like FeCo2S4/reduced graphene oxide films: Novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor. Chem Eng J 381:122695–122076

    Article  CAS  Google Scholar 

  34. Wang R, Xu C, Lee JM (2016) High performance asymmetric supercapacitors New NiOOH nanosheet graphene hydrogels and pure graphene hydrogel. Nano Energy 19:210–221

    Article  CAS  Google Scholar 

  35. Zhan W, Zhu M, Lan J, Wang H, Sui G (2021) 1d Sb2S3@nitrogen-doped carbon coaxial nanotubes uniformly encapsulated within 3d porous graphene aerogel for fast and stable sodium storage. Chem Eng J 408:128007–128016

    Article  CAS  Google Scholar 

  36. Chen M, Dai Y, Wang J, Wang Q, Wang Y, Cheng X, Yan X (2017) Smart combination of three-dimensional-flower-like MoS2 nanospheres/interconnected carbon nanotubes for application in supercapacitor with enhanced electrochemical performance. J Alloy Compd 696:900–906

    Article  CAS  Google Scholar 

  37. Peter IJ, Vijaya S, Anandan S, Nithiananthi P (2021) Sb2S3 entrenched MWCNT composite as a low-cost pt-free counter electrode for dye-sensitized solar cell and a viewpoint for a photo-powered energy system. Electrochim Acta 390:138864–138872

    Article  CAS  Google Scholar 

  38. Tobis M, Sroka S, Frackowiak E (2021) Supercapacitor with carbon/MoS2 composites. Front Energy Res 9:647878–647888

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Anhui Provincial Education Commission (KJ2020A0269, KJ2020A0226) and the National Natural Science Foundation of China (No. 52104291).

Funding

National Natural Science Foundation of China,52104291

Author information

Authors and Affiliations

Authors

Contributions

Jiayu Lia and Junzhe Li wrote the main manuscript text; Shengxue Yan prepared figures 1 Shaohua Luo and Wenbin Xue proposed innovative points of the article.

Corresponding authors

Correspondence to Shaohua Luo or Wenbin Xue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 84896 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, J., Yan, S. et al. Construction of three-dimensional Sb2S3@MoS2/C heterostructure nanorod for high-rate supercapacitors. Ionics 30, 2425–2432 (2024). https://doi.org/10.1007/s11581-024-05375-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05375-x

Keywords

Navigation