Skip to main content

Advertisement

Log in

Investigate the significance of DES to enhance the solubility of noscapine: DFT calculations, MD simulations, and experimental approach

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present work, investigation of the choline chloride-urea base deep eutectic solvents (DES) in various solvents has been performed to explore the change in interaction between choline chloride and urea. A comparative study of various thermodynamic and physiochemical properties of DES in different solvents have been conducted. TD-DFT of the designed DES was performed in different solvents to understand variation in the electronic transition. Further, the DES was explored to enhance or improve the solubility of a drug like candidates, that is, noscapine (NOS). Noscapine is being used as a cough suppressant and possesses anti-cancer potential. It was observed chloride ion of the choline chloride (HBA) showed the huge non-covalent interactions, that is, hydrogen bond, electrostatic, and van der Waals interaction with the hydrogen the donor (HBD) urea. The number of interactions were found to be higher in the polar solvents than in non-polar solvents. The overall stability was also found to be higher in polar solvents. In studying the solubility of NOS in DES through DFT, calculation showed an increase in dipole moment. Therefore, DES could be used to enhance the solubility of the noscapine. Further, molecular dynamics simulations of NOS, DES, and the complex have been performed for 100 ns to understand the stability of the complex. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) trajectories are in the acceptable range and indicated the formation of stable complex between DES and noscapine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made applicable on request of reader.

References

  1. Płotka-Wasylka J, De la Guardia M, Andruch V, Vilková M (2020) Deep eutectic solvents vs ionic liquids: similarities and differences. Microchem J 159:105539. https://doi.org/10.1016/j.microc.2020.105539

    Article  CAS  Google Scholar 

  2. Yao C, Liu H, Wu H, Song X, Wang X, Ren S, Wu W (2022) Comparative study on the deep eutectic solvents formed by choline chloride and cresol isomers from theoretical and experimental perspectives. J Mol Liq 367:120420. https://doi.org/10.1016/j.molliq.2022.120420

    Article  CAS  Google Scholar 

  3. Panakkal EJ, Cheenkachorn K, Chuetor S, Tantayotai P, Raina N, Cheng Y-S, Sriariyanun M (2022) Optimization of deep eutectic solvent pretreatment for bioethanol production from Napier grass. Sustain Energy Technol Assessments 54:102856. https://doi.org/10.1016/j.seta.2022.102856

    Article  Google Scholar 

  4. Zhang Y, Ru J, Hua Y, Huang P, Xu C (2022) One-step preparation, characterization and adsorption property of mesoporous nickel sulfides in deep eutectic solvent. Ceram Int 48:20341–20350. https://doi.org/10.1016/j.ceramint.2022.03.318

    Article  CAS  Google Scholar 

  5. Nahar Y, Thickett SC (2021) Greener, faster, stronger: the benefits of deep eutectic solvents in polymer and materials science. Polymers 13(3):447. https://doi.org/10.3390/polym13030447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaoui S, Chebli B, Basaid K, Mir Y (2023) Deep eutectic solvents as sustainable extraction media for plants and food samples: a review. Sustain Chem Pharm 31:100937. https://doi.org/10.1016/j.scp.2022.100937

    Article  CAS  Google Scholar 

  7. Saini A, Kumar A, Panesar PS, Thakur A (2022) Potential of deep eutectic solvents in the extraction of value-added compounds from agro-industrial by-products. Appl Food Res 2:100211. https://doi.org/10.1016/j.afres.2022.100211

    Article  CAS  Google Scholar 

  8. Liu X, Zhai Y, Xu Z, Zhu Y, Zhou Y, Wang Z, Liu L, Ren W, Xie Y, Li C, Xu M (2023) The novel application of type II deep eutectic solvents (DES) for sludge dewatering. Sep Purif Technol 306:122714. https://doi.org/10.1016/j.seppur.2022.122714

    Article  CAS  Google Scholar 

  9. Zhang J, Zhang K, Hao X, Wan T, Yan Y (2022) Molecular insights into the CO2 separation mechanism of GO supported deep eutectic solvent membrane. J Mol Liq 366:120248. https://doi.org/10.1016/j.molliq.2022.120248

    Article  CAS  Google Scholar 

  10. Li Z, Lee PI (2016) Investigation on drug solubility enhancement using deep eutectic solvents and their derivatives. Int J Pharm 505(1):283–288. https://doi.org/10.1016/j.ijpharm.2016.04.018

    Article  CAS  PubMed  Google Scholar 

  11. Khorsandi M, Nemati-Kande E, Hosseini F, Martinez F, Shekaari H, Mokhtarpour M (2022) Effect of choline chloride based deep eutectic solvents on the aqueous solubility of 4-hydroxycoumarin drug: measurement and correlation. J Mol Liq 368:120650. https://doi.org/10.1016/j.molliq.2022.120650

    Article  CAS  Google Scholar 

  12. Liu Y, Wu Y, Liu J, Wang W, Yang Q, Yang G (2022) Deep eutectic solvents: recent advances in fabrication approaches and pharmaceutical applications. Int J Pharm 622:121811. https://doi.org/10.1016/j.ijpharm.2022.121811

    Article  CAS  PubMed  Google Scholar 

  13. Nourizadeh F, Mokhtarpour M, Ziaee ZV, Khorsandi M, Sadrmousavi A, Shekaari H (2022) Solubility enhancement and intermolecular interactions of salicylic acid in aqueous solutions of choline chloride based deep eutectic solvents. J Mol Liq 367:120433. https://doi.org/10.1016/j.molliq.2022.120433

    Article  CAS  Google Scholar 

  14. Mr MBS, Mr VSK, Chaudhary M, Singh P (2021) A mini review on synthesis, properties and applications of deep eutectic solvents. J Indian Chem Soc 98:100210. https://doi.org/10.1016/j.jics.2021.100210

    Article  Google Scholar 

  15. Zhang Y, Zhu C, Fu T, Gao X, Ma Y (2022) CO2absorption performance of ChCl-MEA deep eutectic solvent in microchannel. J Environ Chem Eng 10:108792. https://doi.org/10.1016/j.jece.2022.108792

    Article  CAS  Google Scholar 

  16. Sorgho A, Bougouma M, De Leener G, Vander Steen J, Doneux T (2022) Impact of speciation on the tellurium electrochemistry in choline chloride-based deep eutectic solvents. Electrochem Commun. 140:107327. https://doi.org/10.1016/j.elecom.2022.107327

    Article  CAS  Google Scholar 

  17. Jagirani MS, Soylak M (2022) Deep eutectic solvents-based adsorbents in environmental analysis. TrAC - trends Anal Chem 157:116762. https://doi.org/10.1016/j.trac.2022.116762

    Article  CAS  Google Scholar 

  18. Naseem Z, Shehzad RA, Ihsan A, Iqbal J, Zahid M, Pervaiz A, Sarwari G (2021) Theoretical investigation of supramolecular hydrogen-bonded choline chloride-based deep eutectic solvents using density functional theory. Chem Phys Lett 769:138427. https://doi.org/10.1016/j.cplett.2021.138427

    Article  CAS  Google Scholar 

  19. Feng L, Meng H, Lu Y, Li C (2022) Efficient and reversible absorption of HCl gas by ChCl-based deep eutectic solvents-insights into the absorption behavior and mechanism. Sep Purif Technol 281:119994. https://doi.org/10.1016/j.seppur.2021.119994

    Article  CAS  Google Scholar 

  20. Ru J, Hua Y, Wang D, Xu C, Li J, Li Y, Zhou Z, Gong K (2015) Mechanistic insight of in situ electrochemical reduction of solid PbO to lead in ChCl-EG deep eutectic solvent. Electrochim Acta 186:455–464. https://doi.org/10.1016/j.electacta.2015.11.013

    Article  CAS  Google Scholar 

  21. Wang S, Xu C, Lei Z, Li J, Lu J, Xiang Q, Chen X, Hua Y, Li Y (2022) Recycling of zinc oxide dust using ChCl-urea deep eutectic solvent with nitrilotriacetic acid as complexing agents. Miner Eng 175:107295. https://doi.org/10.1016/j.mineng.2021.107295

    Article  CAS  Google Scholar 

  22. Sorgho A, Bougouma M, Aldibaja FK, Nisol B, Reniers F, Buess-Herman C, Doneux T (2022) Electrochemical formation and stability of copper selenide thin films in the choline chloride-urea deep eutectic solvent at gold electrode. Electrochim Acta 424:140676. https://doi.org/10.1016/j.electacta.2022.140676

    Article  CAS  Google Scholar 

  23. Chen X, Dang T-TT, Facchini PJ (2015) Noscapine comes of age. Phytochemistry 111:7–13. https://doi.org/10.1016/j.phytochem.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  24. Aneja R, Lopus M, Zhou J, Vangapandu SN, Ghaleb A, Yao J, Nettles JH, Zhou B, Gupta M, Panda D, Chandra R (2006) Rational design of the microtubule-targeting anti-breast cancer drug EM015. Cancer Res 66(7):3782–3791. https://doi.org/10.1158/0008-5472.CAN-05-2962

    Article  CAS  PubMed  Google Scholar 

  25. Kumar A, Kumar D, Kumar R, Singh P, Chandra R, Kumari K (2020) DFT and docking studies of designed conjugates of noscapines & repurposing drugs: promising inhibitors of main protease of SARS-CoV-2 and falcipan-2. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1841030

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rida PCG, LiVecche D, Ogden A, Zhou J, Aneja R (2015) The noscapine chronicle: a pharmaco-historic biography of the opiate alkaloid family and its clinical applications. Med Res Rev 35:1072–1096. https://doi.org/10.1002/med.21357

  27. Kumar D, Kumari K, Jayaraj A, Kumar V, Kumar RV, Dass SK, Chandra R, Singh P (2021) Understanding the binding affinity of noscapines with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures. J Biomol Struct Dyn 39:2659–2672. https://doi.org/10.1080/07391102.2020.1752310

    Article  CAS  PubMed  Google Scholar 

  28. Kumar D, Singh P, Jayaraj A, Kumar V, Kumari K, Patel R (2019) A theoretical model to study the interaction of erythro-noscapines with nsP3 protease of Chikungunya virus. ChemistrySelect 4(17):4892–4900. https://doi.org/10.1002/slct.201803360

    Article  CAS  Google Scholar 

  29. Verma AK, Bansal S, Singh J, Tiwari RK, Sankar VK, Tandon V, Chandra R (2006) Synthesis and in vitro cytotoxicity of haloderivatives of noscapine. Bioorg Med Chem 14:6733–6736. https://doi.org/10.1016/j.bmc.2006.05.069

    Article  CAS  PubMed  Google Scholar 

  30. Vishvakarma VK, Kumari K, Singh P (2020) Inhibition of protease of novel corona virus by designed noscapines: molecular docking and ADMET studies (preprint), ChemRxiv. https://doi.org/10.26434/chemrxiv.12813254.v1

  31. Madan J, Dhiman N, Parmar VK, Sardana S, Bharatam PV, Aneja R, Chandra R, Katyal A (2010) Inclusion complexes of noscapine in β-cyclodextrin offer better solubility and improved pharmacokinetics. Cancer Chemother Pharmacol 65:537–548. https://doi.org/10.1007/s00280-009-1060-3

    Article  CAS  PubMed  Google Scholar 

  32. Ni J, Xiao H, Weng L, Wei X, Xu Y (2011) Blocking group-directed diastereoselective total synthesis of (±)-α-noscapine. Tetrahedron 67:5162–5167. https://doi.org/10.1016/J.TET.2011.05.060

    Article  CAS  Google Scholar 

  33. Singh MB, Prajapat A, Jain P, Singh P, Bahadur I, Kaushik NK, Kaushik N, Kumari K (2023) Investigate the ability of deep eutectic solvent (ChCl-glycerol) to sense the sulphur dioxide using density functional theory calculations and molecular dynamics simulations. J Mol Liq 388:122720. https://doi.org/10.1016/j.molliq.2023.122720

    Article  CAS  Google Scholar 

  34. García G, Atilhan M, Aparicio S (2015) An approach for the rationalization of melting temperature for deep eutectic solvents from DFT. Chem Phys Lett 634:151–155. https://doi.org/10.1016/j.cplett.2015.06.017

    Article  ADS  CAS  Google Scholar 

  35. Atilhan M, Aparicio S (2019) Molecular dynamics simulations of mixed deep eutectic solvents and their interaction with nanomaterials. J Mol Liq 283:147–154. https://doi.org/10.1016/j.molliq.2019.03.068

    Article  CAS  Google Scholar 

  36. Turro Research Group, Polarity of Solvents, (2017) 1.

  37. Han P, Nie W, Zhao G, Gao P (2022) Theoretical investigation on the structure and physicochemical properties of choline chloride-based deep eutectic solvents. J Mol Liq 366:120243. https://doi.org/10.1016/j.molliq.2022.120243

    Article  CAS  Google Scholar 

  38. Paul N, Banerjee T (2022) Study on the extraction of acetamiprid and imidacloprid from an aqueous environment using menthol-based hydrophobic eutectic solvents: quantum chemical and molecular dynamics insights. ACS Sustain Chem Eng 10:4227–4246. https://doi.org/10.1021/acssuschemeng.2c00023

    Article  CAS  Google Scholar 

  39. Santra M, Kunzru D, Rabari D (2022) A stability analysis of choline chloride: urea deep eutectic solvent using density functional theory. Comput Theor Chem 1217:113921. https://doi.org/10.1016/j.comptc.2022.113921

    Article  CAS  Google Scholar 

  40. Kumar A, Kumari K, Singh S, Bahdur I, Singh P (2021) Noscapine anticancer drug designed with ionic liquids to enhance solubility: DFT and ADME approach. J Mol Liq 325:115159. https://doi.org/10.1016/j.molliq.2020.115159

    Article  CAS  Google Scholar 

  41. Brown T (2014) ChemDraw. Sci Teach 81:67

    Google Scholar 

  42. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J. V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 16, Rev. C.01, Gaussian 16, Rev. C. 01. (2016).

  43. Hill JG (2013) Gaussian basis sets for molecular applications. Int J Quantum Chem 113(1):21–34. https://doi.org/10.1002/qua.24355

    Article  CAS  Google Scholar 

  44. Schulz E, Speekenbrink M, Krause A (2018) A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions. J Math Psychol 85:1–16. https://doi.org/10.1016/j.jmp.2018.03.001

    Article  MathSciNet  Google Scholar 

  45. Tirado-Rives J, Jorgensen WL (2008) Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theory Comput 4:297–306. https://doi.org/10.1021/ct700248k

    Article  CAS  PubMed  Google Scholar 

  46. R. Dennington, T.A. Keith, J.M. Millam (2016) GaussView 6.0. 16, Semichem Inc. Shawnee Mission. KS, USA.

  47. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Kruse H, Grimme S (2012) A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. J Chem Phys 136:154101. https://doi.org/10.1063/1.3700154

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Brandenburg JG, Alessio M, Civalleri B, Peintinger MF, Bredow T, Grimme S (2013) Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations. J Phys Chem A 117:9282–9292. https://doi.org/10.1021/jp406658y

    Article  CAS  PubMed  Google Scholar 

  50. Grabowski SJ (2021) Classification of so-called non-covalent interactions based on vsepr model. Molecules 26(16):4939. https://doi.org/10.3390/molecules26164939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hussein HA, Fadhil GF (2023) Theoretical investigation of para amino-dichloro chalcone isomers. Part II: a DFT structure–stability study of the FMO and NLO properties. ACS Omega 8:4937–4953. https://doi.org/10.1021/acsomega.2c07148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shakourian-Fard M, Taimoory SM, Ghenaatian HR, Kamath G, Trant JF (2021) A DFT study of the adsorption of deep eutectic solvents onto graphene and defective graphene nanoflakes. J Mol Liq 327:114850. https://doi.org/10.1016/j.molliq.2020.114850

    Article  CAS  Google Scholar 

  53. Bendjeddou A, Abbaz T, Gouasmia A, Villemin D (2016) Quantum chemical studies on molecular structure and reactivity descriptors of some p-nitrophenyl tetrathiafulvalenes by density functional theory (DFT). Acta Chim Pharm Indica 6:32–44

    CAS  Google Scholar 

  54. Chattaraj PK, Parr RG (2005) Density functional theory of chemical hardness. Chem Hardness pp 11–25. https://doi.org/10.1007/BFb0036

  55. Krishna Priya M, Revathi BK, Renuka V, Sathya S, Samuel Asirvatham P (2019) Molecular structure, spectroscopic (FT-IR, FT-Raman,13C and 1H NMR) analysis, HOMO-LUMO energies, mulliken, MEP and thermal properties of new chalcone derivative by DFT calculation. Mater Today Proc 8:37–46. https://doi.org/10.1016/j.matpr.2019.02.078

    Article  CAS  Google Scholar 

  56. Pearson RG (1963) Hard and Soft Acids and Bases. J Am Chem Soc 85:3533–3539. https://doi.org/10.1021/ja00905a001

    Article  CAS  Google Scholar 

  57. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516.https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  58. Bharanidharan S, Myvizhi P (2018) Frontier molecular orbitals (FMO) and molecular electrostatic potential (MEP) surface of 2-(4-chlorophenyl)-1-((furan-2-yl) methyl)-4,5-dimethyl1H-imidazole using DFT method. Int J Pure Appl Math 119:6769–6777

    Google Scholar 

  59. Prabhaharan M, Prabakaran AR, Gunasekaran S, Srinivasan S (2015) DFT studies on vibrational spectra, HOMO-LUMO, NBO and thermodynamic function analysis of cyanuric fluoride, Spectrochim. Acta - Part A Mol. Biomol Spectrosc 136:494–503. https://doi.org/10.1016/j.saa.2014.09.062

    Article  CAS  Google Scholar 

  60. O’boyle NM, Tenderholt AL, Langner KM (2008) cclib: A library for package-independent computational chemistry algorithms. Comput Chem 29:839–845. https://doi.org/10.1002/jcc.20823

  61. Aetizaz M, Sarfaraz S, Ayub K (2023) Interaction of imidazolium based ionic liquid electrolytes with carbon nitride electrodes in supercapacitors; a step forward for understanding electrode–electrolyte interaction. J Mol Liq 369:120955. https://doi.org/10.1016/j.molliq.2022.120955

    Article  CAS  Google Scholar 

  62. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  63. Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99:1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Professor B. Jayaram for utilizing the facilities of the SCFBio, Indian Institute of Technology, Delhi, India. The KSU author acknowledges the funding from Researchers Supporting Project number (RSP2023R355), King Saud University, Riyadh, Saudi Arabia. Nagendra K. Kaushik acknowledge National Research Foundation, Korean Government (2021R1A6A1A03038785,2021R1F1A1055694, 2021R1C1C1013875).

Author information

Authors and Affiliations

Authors

Contributions

Madhur Babu Singh, Ayushi Prajapat, Ajay Kumar, and Neha Kaushik—performed calculations draft writing. Pallavi Jain, Indra Bahadur, Faruq Mohammad, and Nagendra Kumar Kaushik—analysis and writing. Prashant Singh and Kamlesh Kumari—conceptualization and finalization of the manuscript.

Corresponding authors

Correspondence to Prashant Singh, Nagendra Kumar Kaushik, Neha Kaushik or Kamlesh Kumari.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.B., Prajapat, A., Jain, P. et al. Investigate the significance of DES to enhance the solubility of noscapine: DFT calculations, MD simulations, and experimental approach. Ionics 30, 1795–1813 (2024). https://doi.org/10.1007/s11581-023-05359-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05359-3

Keywords

Navigation