Skip to main content
Log in

Keystones of green smart city—framework, e-waste, and their impact on the environment—a review

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Current urbanization has urged the world to adopt digital transformation and concurrently to have a balanced ecology to optimize the efficiency of urban services without affecting the environment. With that development of the green smart city arose howbeit, it is predicted that e-waste generation particularly energy storage devices (ESDs) would spike consequently. This is because ESDs are the backbone of most electronics and IoT-based equipment. Other literature published often focuses on smart e-waste management which results in better organization of the e-waste without reducing them. Thus, in this paper, a comprehensive review on minimization of e-waste generation is targeted through the deployment of green and recyclable ESDs. In this paper, the usage of recyclable or/and waste-derived active materials is recommended to replace the current active materials of ESDs through the utilization of a waste-to-resource strategy. As a result, the ESDs produced could extend the lifespan of the device and, without help, lessen the incorporation of heavy metals compromising its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sridhar KS (2016) Costs and benefits of urbanization: the indian case. ADBI Working Paper 607. Available at SSRN: https://ssrn.com/abstract=2892925; https://doi.org/10.2139/ssrn.2892925

  2. Estrin S, Nielsen BB, Nielsen S (2017) Emerging market multinational companies and internationalization: the role of home country urbanization. J Int Manag 23(3):326–339. https://doi.org/10.1016/J.INTMAN.2016.11.006

    Article  Google Scholar 

  3. “GDP (current US$) - China | Data,” The World Bank. https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?end=2020&locations=CN&start=1961&view=chart. Accessed 07 Sept 2021

  4. Guan X, Wei H, Lu S, Dai Q, Su H (2018) Assessment on the urbanization strategy in China: achievements, challenges and reflections. Habitat Int 71:97–109. https://doi.org/10.1016/J.HABITATINT.2017.11.009.

  5. U. Nations, D. of Economic, S. Affairs, and P. Division (2018) World urbanization prospects the 2018 revision. New York, NY10017, USA. https://esa.un.org/unpd/wup/

  6. Saha N, Rahman MS, Ahmed MB, Zhou JL, Ngo HH, Guo W (2017) Industrial metal pollution in water and probabilistic assessment of human health risk. J Environ Manage 185:70–78. https://doi.org/10.1016/J.JENVMAN.2016.10.023

    Article  CAS  PubMed  Google Scholar 

  7. Issakhov A, Alimbek A, Zhandaulet Y (2021) The assessment of water pollution by chemical reaction products from the activities of industrial facilities: numerical study. J Clean Prod 282:125239. https://doi.org/10.1016/J.JCLEPRO.2020.125239

    Article  CAS  Google Scholar 

  8. Holgate ST (2017) ‘Every breath we take: the lifelong impact of air pollution’ – a call for action. Clin Med 17(1):8. https://doi.org/10.7861/CLINMEDICINE.17-1-8

    Article  Google Scholar 

  9. Sun S, Li L, Wu Z, Gautam A, Li J, Zhao W (2020) Variation of industrial air pollution emissions based on VIIRS thermal anomaly data. Atmos Res 244:105021. https://doi.org/10.1016/J.ATMOSRES.2020.105021

    Article  CAS  Google Scholar 

  10. Zhu L, Hao Y, Lu ZN, Wu H, Ran Q (2019) Do economic activities cause air pollution? Evidence from China’s major cities. Sustain Cities Soc 49:101593. https://doi.org/10.1016/J.SCS.2019.101593

    Article  Google Scholar 

  11. Onjefu SA, Ejembi E, Onjefu LA, Onjefu SA, Ejembi E, Onjefu LA (2019) Measurement of noise pollution in northern industrial areas of Windhoek, Namibia. J Environ Prot (Irvine, Calif) 10(9):1144–1154. https://doi.org/10.4236/JEP.2019.109068

    Article  Google Scholar 

  12. Silva MJ (2020) Children’s practices with electronic sensors to understand and mitigate sound pollution in primary school. https://doi.org/10.1080/02635143.2020.1841150.

  13. Jeong H, Choi JY, Lee J, Lim J, Ra K (2020) Heavy metal pollution by road-deposited sediments and its contribution to total suspended solids in rainfall runoff from intensive industrial areas. Environ Pollut 265:115028. https://doi.org/10.1016/J.ENVPOL.2020.115028

    Article  CAS  PubMed  Google Scholar 

  14. Xiang M et al (2020) Assessment of heavy metal pollution in soil and classification of pollution risk management and control zones in the industrial developed city. Environ Manag 66(6):1105–1119. https://doi.org/10.1007/S00267-020-01370-W

    Article  MathSciNet  Google Scholar 

  15. Mikhaylov A, Moiseev N, Aleshin K, Burkhardt T (2020) Global climate change and greenhouse effect machine learning methods and sustainable development: multilayer metal-oxides. Entrepreneurship Sustain Issues 7(4). https://doi.org/10.9770/jesi.2020.7.4(21)

  16. Holly Shaftel, Susan Callery, Randal Jackson, Daniel Baile, and Susan Callery, “Effects | facts – climate change: vital signs of the planet,” NASA: Global Climate Change vital signs of the Planet. Accessed 03 Sept. 2021. https://climate.nasa.gov/effects/

  17. Fuentes V et al (2016) Glacial melting: an overlooked threat to Antarctic krill. Sci Rep 6(1):1–12. https://doi.org/10.1038/srep27234

    Article  MathSciNet  CAS  Google Scholar 

  18. Dong H, Xue M, Xiao Y, Liu Y (2021) Do carbon emissions impact the health of residents? Considering China’s industrialization and urbanization. Sci Total Environ 758:143688. https://doi.org/10.1016/J.SCITOTENV.2020.143688

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Kumar P et al (2022) CO2 exposure, ventilation, thermal comfort and health risks in low-income home kitchens of twelve global cities. J Build Eng 61:105254. https://doi.org/10.1016/J.JOBE.2022.105254

    Article  Google Scholar 

  20. Kumar P et al (2021) Potential health risks due to in-car aerosol exposure across ten global cities. Environ Int 155:106688. https://doi.org/10.1016/J.ENVINT.2021.106688

    Article  CAS  PubMed  Google Scholar 

  21. Sabel CE et al (2016) Public health impacts of city policies to reduce climate change: findings from the URGENCHE EU-China project. Environ Health 15(1):5–21. https://doi.org/10.1186/S12940-016-0097-0

    Article  Google Scholar 

  22. “Each Country’s Share of CO2 Emissions | Union of Concerned Scientists,” Union of Concerned Scientists. https://www.ucsusa.org/resources/each-countrys-share-co2-emissions. Accessed 09 Sept 2021

  23. Wood R, Neuhoff K, Moran D, Simas M, Grubb M, Stadler K (2019) The structure, drivers and policy implications of the European carbon footprint. 20(sup1):S39–S57. https://doi.org/10.1080/14693062.2019.1639489

  24. Wei T, Wu J, Chen S (2021) Keeping track of greenhouse gas emission reduction progress and targets in 167 cities worldwide. Front Sustain Cities 0:64. https://doi.org/10.3389/FRSC.2021.696381

    Article  Google Scholar 

  25. Trindade EP, Hinnig MPF, da Costa EM, Marques JS, Bastos RC, Yigitcanlar T (2017) Sustainable development of smart cities: a systematic review of the literature. J Open Innov: Technol Mark Complex 3(3):1–14. https://doi.org/10.1186/S40852-017-0063-2

    Article  Google Scholar 

  26. Ismagiloiva E, Hughes L, Rana N, Dwivedi Y (2019) Role of smart cities in creating sustainable cities and communities: a systematic literature review. IFIP Adv Inf Commun Technol 558:311–324. https://doi.org/10.1007/978-3-030-20671-0_21/TABLES/1

    Article  Google Scholar 

  27. Alsamhi SH, Ma O, Ansari MS, Meng Q (2019) Greening internet of things for greener and smarter cities: a survey and future prospects. Telecommun Syst 72(4):609–632. https://doi.org/10.1007/S11235-019-00597-1/TABLES/7

    Article  Google Scholar 

  28. Kumar A, Payal M, Dixit P, Chatterjee JM (2020) Framework for realization of green smart cities through the Internet of Things (IoT). In: EAI/Springer Innovations in Communication and Computing, pp 85–111. https://doi.org/10.1007/978-3-030-40037-8_6/COVER

    Chapter  Google Scholar 

  29. Almalki FA et al Green IoT for eco-friendly and sustainable smart cities: future directions and opportunities. https://doi.org/10.1007/s11036-021-01790-w

  30. Aliero MS, Qureshi KN, Pasha MF, Jeon G (2021) Smart Home Energy Management Systems in Internet of Things networks for green cities demands and services. Environ Technol Innov 22:101443. https://doi.org/10.1016/J.ETI.2021.101443

    Article  Google Scholar 

  31. Hatzivasilis G et al (2019) The CE-IoT framework for green ICT organizations: the interplay of CE-IoT as an enabler for green innovation and e-waste management in ICT. In: Proceedings - 15th Annual International Conference on Distributed Computing in Sensor Systems, DCOSS 2019, pp 436–442. https://doi.org/10.1109/DCOSS.2019.00088

    Chapter  Google Scholar 

  32. Rani KNA et al (2021) Mobile green e-waste management systems using IoT for smart campus. J Phys Conf Ser 1962(1):012056. https://doi.org/10.1088/1742-6596/1962/1/012056

    Article  Google Scholar 

  33. Rana MM et al (2023) Applications of energy storage systems in power grids with and without renewable energy integration — a comprehensive review. J Energy Storage 68:107811. https://doi.org/10.1016/J.EST.2023.107811

    Article  Google Scholar 

  34. Behabtu HA et al (2020) A review of energy storage technologies’ application potentials in renewable energy sources grid integration. Sustainability 12:10511. https://doi.org/10.3390/SU122410511

    Article  CAS  Google Scholar 

  35. Tan KM, Babu TS, Ramachandaramurthy VK, Kasinathan P, Solanki SG, Raveendran SK (2021) Empowering smart grid: a comprehensive review of energy storage technology and application with renewable energy integration. J Energy Storage 39:102591. https://doi.org/10.1016/J.EST.2021.102591

    Article  Google Scholar 

  36. Ahad MA, Paiva S, Tripathi G, Feroz N (2020) Enabling technologies and sustainable smart cities. Sustain Cities Soc 61:102301. https://doi.org/10.1016/J.SCS.2020.102301

    Article  Google Scholar 

  37. Das A, Debnath B, Modak N, Das A, De D (2020) E-waste inventorisation for sustainable smart cities in India: a cloud-based framework. In: Proceedings of 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering, WIECON-ECE 2020, pp 332–335. https://doi.org/10.1109/WIECON-ECE52138.2020.9397960

    Chapter  Google Scholar 

  38. Ansari L, Alam MA, Biswas R, Idrees SM (2022) Adaptation of smart technologies and e-waste: risks and environmental impact. Green Energy Technol:201–220. https://doi.org/10.1007/978-3-030-80702-3_12/COVER

  39. El-Mawla NA, Badawy M (2023) Eco-friendly IoT solutions for smart cities development: an overview. In: 1st International Conference in Advanced Innovation on Smart City, ICAISC 2023 - Proceedings. https://doi.org/10.1109/ICAISC56366.2023.10085100

    Chapter  Google Scholar 

  40. Voskergian D, Ishaq I (2023) Smart e-waste management system utilizing Internet of Things and deep learning approaches. J Smart Cities Soc 2(2):77–98. https://doi.org/10.3233/SCS-230007

    Article  Google Scholar 

  41. Al-Sharhan SA et al (2018) Challenges and opportunities in the digital era:11195. https://doi.org/10.1007/978-3-030-02131-3

  42. Ribeiro SS (2019) Issues of strategic digital city. Urban Sci 3(4):102. https://doi.org/10.3390/URBANSCI3040102

    Article  Google Scholar 

  43. Dameri RP, Benevolo C, Veglianti E, Li Y (2019) Understanding smart cities as a glocal strategy: a comparison between Italy and China. Technol Forecast Soc Change 142:26–41. https://doi.org/10.1016/J.TECHFORE.2018.07.025

    Article  Google Scholar 

  44. Ma C, Deng J, Zhao X, Zhang Y (2018) Theory and practice of ecological city construction. IOP Conf Ser Earth Environ Sci 186(3):012058. https://doi.org/10.1088/1755-1315/186/3/012058

    Article  Google Scholar 

  45. Yigitcanlar T (2018) Editorial: Smart city, knowledge city, sustainable city - the brand soup of contemporary cities. Int J Knowl Based Dev 9(1):1–5

    Google Scholar 

  46. Anthony Jnr B (2020) Smart city data architecture for energy prosumption in municipalities: concepts, requirements, and future directions. Int J Green Energy 17(13):827–845. https://doi.org/10.1080/15435075.2020.1791878

    Article  Google Scholar 

  47. Kirimtat A, Krejcar O, Kertesz A, Tasgetiren MF (2020) Future trends and current state of smart city concepts: a survey. IEEE Access 8:86448–86467. https://doi.org/10.1109/ACCESS.2020.2992441

    Article  Google Scholar 

  48. Matta A (2019) Smart cities and inclusive growth building on the outcomes of the 1st OECD Roundtable on Smart Cities and Inclusive Growth

    Google Scholar 

  49. Myeong S, Kim Y, Ahn MJ (2020) Smart city strategies—technology push or culture pull? A case study exploration of Gimpo and Namyangju, South Korea. Smart Cities 4(1):41–53. https://doi.org/10.3390/SMARTCITIES4010003

    Article  Google Scholar 

  50. Veglianti E, Magnaghi E, De Marco M, Li Y (2021) Smart city in China: the state of art of Xiong an new area. Lect Notes Inf Syst Organ 36:81–97. https://doi.org/10.1007/978-3-030-60607-7_6/FIGURES/2

    Article  Google Scholar 

  51. Lu CW, Huang JC, Chen C, Shu MH, Hsu CW, Tapas Bapu BR (2021) An energy-efficient smart city for sustainable green tourism industry. Sustain Energy Technol Assessments 47:101494. https://doi.org/10.1016/J.SETA.2021.101494

    Article  Google Scholar 

  52. Delmastro C, De Miglio R, Chiodi A, Gargiulo M, Pisano P (2019) The smart city of Torino. In: Smart City Emergence: Cases From Around the World, pp 51–81. https://doi.org/10.1016/B978-0-12-816169-2.00003-1

    Chapter  Google Scholar 

  53. Yoon C, Huh M, Kang SG, Park J, Lee C (2018) Implement smart farm with IoT technology. In: International Conference on Advanced Communication Technology, ICACT, pp 749–752. https://doi.org/10.23919/ICACT.2018.8323908

    Chapter  Google Scholar 

  54. Stolojescu-Crisan C, Crisan C, Butunoi BP (2021) An iot-based smart home automation system. Sensors 21(11):1–23. https://doi.org/10.3390/s21113784

    Article  Google Scholar 

  55. Isyanto H, Arifin AS, Suryanegara M (2020) Design and implementation of IoT-based smart home voice commands for disabled people using Google Assistant. In: Proceeding - ICoSTA 2020: 2020 International Conference on Smart Technology and Applications: Empowering Industrial IoT by Implementing Green Technology for Sustainable Development. https://doi.org/10.1109/ICOSTA48221.2020.1570613925

    Chapter  Google Scholar 

  56. ALRikabi HTS, Nasser KW, Alaidi AHM (2020) Short paper- the application of wireless communication in IOT for saving electrical energy. Int J Interact Mob Technol 14(1):152–160

    Article  Google Scholar 

  57. Sodhro AH, Pirbhulal S, Luo Z, de Albuquerque VHC (2019) Towards an optimal resource management for IoT based Green and sustainable smart cities. J Clean Prod 220:1167–1179. https://doi.org/10.1016/J.JCLEPRO.2019.01.188

    Article  Google Scholar 

  58. Sodhro AH, Pirbhulal S, Sangaiah AK, Lohano S, Sodhro GH, Luo Z (2018) 5G-based transmission power control mechanism in fog computing for internet of things devices. Sustainability (Switzerland) 10(4):1–17. https://doi.org/10.3390/su10041258

    Article  Google Scholar 

  59. Batalla JM et al (2017) Efficient media streaming with collaborative terminals for the smart city environment. IEEE Commun Mag 55(1):98–104. https://doi.org/10.1109/MCOM.2017.1600225CM

    Article  Google Scholar 

  60. Yang C-T, Chen S-T, Liu J-C, Chan Y-W, Chen C-C, Verma VK (2019) An energy-efficient cloud system with novel dynamic resource allocation methods. J Supercomput 75(8):4408–4429. https://doi.org/10.1007/S11227-019-02794-W

    Article  Google Scholar 

  61. Lavric A (2019) LoRa (long-range) high-density sensors for internet of things. J Sens 2019. https://doi.org/10.1155/2019/3502987

  62. Premsankar G, Ghaddar B, Slabicki M, Di Francesco M (2020) Optimal configuration of LoRa networks in smart cities. IEEE Trans Industr Inform 16(12):7243–7254. https://doi.org/10.1109/TII.2020.2967123.

  63. Aslam MS et al (2020) exploring multi-hop LoRa for green smart cities. IEEE Netw 34(2):225–231. https://doi.org/10.1109/MNET.001.1900269

    Article  MathSciNet  Google Scholar 

  64. Bruneo D, Longo F, Merlino G, Puliafito A, Kushwaha N (2018) Integrating IoT and cloud in a smart city context: the #SmartME case study. Int J Comput Appl Technol 57(4):267–280. https://doi.org/10.1504/IJCAT.2018.093528

    Article  Google Scholar 

  65. “Habitap takes smart living in Singapore to the cloud - FutureIoT”. https://futureiot.tech/habitap-takes-smart-living-in-singapore-to-the-cloud/. Accessed 16 Sept 2021

  66. Pelonero L, Fornaia A, Tramontana E (2020) From smart city to smart citizen: rewarding waste recycle by designing a data-centric IoT based garbage collection service. In: Proceedings - 2020 IEEE International Conference on Smart Computing, SMARTCOMP 2020, pp 380–385. https://doi.org/10.1109/SMARTCOMP50058.2020.00081

    Chapter  Google Scholar 

  67. Fithri DL, Utomo AP, Nugraha F (2020) Implementation of SaaS cloud computing services on e-learning applications (case study: PGRI foundation school). J Phys Conf Ser 1430(1):012049. https://doi.org/10.1088/1742-6596/1430/1/012049

    Article  Google Scholar 

  68. Cho S, Hwang S, Shin W, Kim N, In HP (2021) Design of military service framework for enabling migration to military SaaS cloud environment. Electronics 10(5):572. https://doi.org/10.3390/ELECTRONICS10050572

    Article  Google Scholar 

  69. Mohammed CM, Zeebaree SRM (2021) Sufficient comparison among cloud computing services: IaaS, PaaS, and SaaS: a review. https://doi.org/10.5281/zenodo.4450129

  70. Yasrab R (2018) Platform-as-a-service (paas): the next hype of cloud computing. https://doi.org/10.48550/arXiv.1804.10811

  71. Carvalho M, Menascé DA, Brasileiro F (2017) Capacity planning for IaaS cloud providers offering multiple service classes. Future Gener Comput Syst 77:97–111. https://doi.org/10.1016/J.FUTURE.2017.07.019

    Article  Google Scholar 

  72. Djemame K et al (2017) PaaS-IaaS inter-layer adaptation in an energy-aware cloud environment. IEEE Trans Sustain Computing 2(2):127–139. https://doi.org/10.1109/TSUSC.2017.2719159

    Article  Google Scholar 

  73. Zhang D (2018) Big data security and privacy protection. 77:275–278. https://doi.org/10.2991/icmcs-18.2018.56

  74. Li B, Kisacikoglu MC, Liu C, Singh N, Erol-Kantarci M (2017) Big data analytics for electric vehicle integration in green smart cities. IEEE Commun Mag 55(11):19–25. https://doi.org/10.1109/MCOM.2017.1700133

    Article  CAS  Google Scholar 

  75. Smys S, Raj JS (2019) Internet of Things and big data analytics for health care with cloud computing. J. Inf. Technol Digital World. https://doi.org/10.36548/jitdw.2019.1.002

  76. Allam Z, Dhunny ZA (2019) On big data, artificial intelligence and smart cities. Cities 89:80–91. https://doi.org/10.1016/J.CITIES.2019.01.032

    Article  Google Scholar 

  77. Chen M et al (2020) Living with I-fabric: smart living powered by intelligent fabric and deep analytics. IEEE Netw 34(5):156–163. https://doi.org/10.1109/MNET.011.1900570

    Article  Google Scholar 

  78. Ourahou M, Ayrir W, EL Hassouni B, Haddi A (2020) Review on smart grid control and reliability in presence of renewable energies: challenges and prospects. Math Comput Simul 167:19–31. https://doi.org/10.1016/J.MATCOM.2018.11.009

    Article  MathSciNet  Google Scholar 

  79. Corsini F, Certomà C, Dyer M, Frey M (2019) Participatory energy: research, imaginaries and practices on people’ contribute to energy systems in the smart city. Technol Forecast Soc Change 142:322–332. https://doi.org/10.1016/J.TECHFORE.2018.07.028

    Article  Google Scholar 

  80. Worighi I, Maach A, Hafid A, Hegazy O, Van Mierlo J (2019) Integrating renewable energy in smart grid system: architecture, virtualization and analysis. Sustain Energy, Grids Netw 18:100226. https://doi.org/10.1016/J.SEGAN.2019.100226

    Article  Google Scholar 

  81. Sureshkumar K, Ponnusamy V (2020) Hybrid renewable energy systems for power flow management in smart grid using an efficient hybrid technique. 42(11):2068–2087. https://doi.org/10.1177/0142331220904818

  82. Ahmad T, Zhang H, Yan B (2020) A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. Sustain Cities Soc 55:102052. https://doi.org/10.1016/J.SCS.2020.102052

    Article  Google Scholar 

  83. Thellufsen JZ et al (2020) Smart energy cities in a 100% renewable energy context. Renew Sustain Energy Rev 129:109922. https://doi.org/10.1016/J.RSER.2020.109922

    Article  Google Scholar 

  84. Jacobson MZ et al (2018) 100% clean and renewable Wind, Water, and Sunlight (WWS) all-sector energy roadmaps for 53 towns and cities in North America. Sustain Cities Soc 42:22–37. https://doi.org/10.1016/j.scs.2018.06.031

    Article  Google Scholar 

  85. Shi R, Li S, Zhang P, Lee KY (2020) Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization. Renew Energ 153:1067–1080. https://doi.org/10.1016/J.RENENE.2020.02.027

    Article  Google Scholar 

  86. Li Y, Mohammed SQ, Nariman GS, Aljojo N, Rezvani A, Dadfar S (2020) Energy management of microgrid considering renewable energy sources and electric vehicles using the backtracking search optimization algorithm. J Energy Resour Technol 142(5). https://doi.org/10.1115/1.4046098

  87. Mohamed N, Aymen F, Ali ZM, Zobaa AF, Aleem SHEA (Jun. 2021) Efficient power management strategy of electric vehicles based hybrid renewable energy. Sustainability 13:7351. https://doi.org/10.3390/SU13137351

    Article  CAS  Google Scholar 

  88. Davies DM et al (2018) Combined economic and technological evaluation of battery energy storage for grid applications. Nat Energy 4(1):42–50. https://doi.org/10.1038/s41560-018-0290-1

    Article  MathSciNet  ADS  Google Scholar 

  89. Olabi AG, Onumaegbu C, Wilberforce T, Ramadan M, Abdelkareem MA, Al-Alami AH (2021) Critical review of energy storage systems. Energy 214:118987. https://doi.org/10.1016/J.ENERGY.2020.118987

    Article  CAS  Google Scholar 

  90. Arbabzadeh M, Sioshansi R, Johnson JX, Keoleian GA (2019) The role of energy storage in deep decarbonization of electricity production. Nat Commun 10(1):1–11. https://doi.org/10.1038/s41467-019-11161-5

    Article  CAS  Google Scholar 

  91. Denholm P, Mai T (2019) Timescales of energy storage needed for reducing renewable energy curtailment. Renew Energ 130:388–399. https://doi.org/10.1016/J.RENENE.2018.06.079

    Article  Google Scholar 

  92. Eseye AT, Lehtonen M, Tukia T, Uimonen S, Millar RJ (2019) Optimal energy trading for renewable energy integrated building microgrids containing electric vehicles and energy storage batteries. IEEE Access 7:106092–106101. https://doi.org/10.1109/ACCESS.2019.2932461

    Article  Google Scholar 

  93. Zsiborács H et al (2019) Intermittent renewable energy sources: the role of energy storage in the European power system of 2040. Electronics 8(7):729. https://doi.org/10.3390/ELECTRONICS8070729

    Article  Google Scholar 

  94. Forti V, Baldé CP, Kuehr R, Bel G (2020) The global e-waste monitor 2020. United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam, pp 120

  95. Carstens L, Popp M, Keicher C, Hertrampf R, Weigner D, Meiering MS, Luippold G, Süssmuth SD, Beckmann CF, Wunder A, Grimm S (2023) Effects of a single dose of amisulpride on functional brain changes during reward-and motivation-related processing using task-based fMRI in healthy subjects and patients with major depressive disorder—study protocol for a randomized clinical trial. Trials 24(1):761

  96. Shaikh S, Thomas K, Zuhair S (2020) An exploratory study of e-waste creation and disposal: upstream considerations,” Resour Conserv Recycl, vol. 155, p. 104662. https://doi.org/10.1016/J.RESCONREC.2019.104662.

  97. Ceballos DM, Dong Z (2016) The formal electronic recycling industry: challenges and opportunities in occupational and environmental health research. Environ Int 95:157–166. https://doi.org/10.1016/J.ENVINT.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  98. Arya S, Rautela R, Chavan D, Kumar S (2021) Evaluation of soil contamination due to crude E-waste recycling activities in the capital city of India. Process Saf Environ Protection 152:641–653. https://doi.org/10.1016/J.PSEP.2021.07.001

    Article  CAS  Google Scholar 

  99. Bhat V, Patil Y (1964) An integrated and sustainable model for e-waste management for pune city households. J Phys Conf Ser:62111. https://doi.org/10.1088/1742-6596/1964/6/062111

  100. Dutta D, Goel S (2021) Understanding the gap between formal and informal e-waste recycling facilities in India. Waste Manag 125:163–171. https://doi.org/10.1016/J.WASMAN.2021.02.045

    Article  PubMed  Google Scholar 

  101. J. Alghazo, O. K. M. Ouda, · Ammar E. Hassan, “E-waste environmental and information security threat: GCC countries vulnerabilities,” EuroMediterr J Environ Integr, vol. 3, p. 13, 2018, doi: https://doi.org/10.1007/s41207-018-0050-4.

    Article  Google Scholar 

  102. Lucier CA, Gareau BJ (2019) Electronic waste recycling and disposal: an overview. In: Assessment and Management of Radioactive and Electronic Wastes. https://doi.org/10.5772/INTECHOPEN.85983

    Chapter  Google Scholar 

  103. Li W, Achal V (2020) Environmental and health impacts due to e-waste disposal in China – a review. Sci Total Environ 737:139745. https://doi.org/10.1016/J.SCITOTENV.2020.139745

    Article  CAS  PubMed  ADS  Google Scholar 

  104. Singh N, Ogunseitan OA, Tang Y (2020) Systematic review of pregnancy and neonatal health outcomes associated with exposure to e-waste disposal:1–25. https://doi.org/10.1080/10643389.2020.1788913

  105. Kumar Awasthi A, Zeng X, Li J Relationship between e-waste recycling and human health risk in India: a critical review. https://doi.org/10.1007/s11356-016-6085-7

  106. Rautela R, Arya S, Vishwakarma S, Lee J, Kim KH, Kumar S (2021) E-waste management and its effects on the environment and human health. Sci Total Environ 773:145623. https://doi.org/10.1016/J.SCITOTENV.2021.145623

    Article  CAS  PubMed  ADS  Google Scholar 

  107. Singh N, Duan H, Tang Y (2020) Toxicity evaluation of E-waste plastics and potential repercussions for human health. Environ Int 137:105559. https://doi.org/10.1016/J.ENVINT.2020.105559

    Article  CAS  PubMed  Google Scholar 

  108. Hennebert P, Filella M (2018) WEEE plastic sorting for bromine essential to enforce EU regulation. Waste Manag 71:390–399. https://doi.org/10.1016/J.WASMAN.2017.09.031

    Article  CAS  PubMed  Google Scholar 

  109. Akram R et al (2019) Trends of electronic waste pollution and its impact on the global environment and ecosystem. Environ Sci Pollut Res 26(17):16923–16938. https://doi.org/10.1007/S11356-019-04998-2

    Article  CAS  Google Scholar 

  110. Thagela M (2019) E-waste: adverse impact on health & environment. Int J Adv Res Manag Soc Sci 8(10):11–21

    Google Scholar 

  111. Jobby R, Jha P, Yadav AK, Desai N (2018) Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review. Chemosphere 207:255–266. https://doi.org/10.1016/J.CHEMOSPHERE.2018.05.050

    Article  CAS  PubMed  ADS  Google Scholar 

  112. Fleming EL, Newman PA, Liang Q, Daniel JS (2020) The impact of continuing CFC-11 emissions on stratospheric ozone. J Geophys Res Atmos 125(3):e2019JD031849. https://doi.org/10.1029/2019JD031849

    Article  CAS  ADS  Google Scholar 

  113. Rodrigues MO, Abrantes N, Gonçalves FJM, Nogueira H, Marques JC, Gonçalves AMM (2019) Impacts of plastic products used in daily life on the environment and human health: what is known? Environ Toxicol Pharmacol 72:103239. https://doi.org/10.1016/J.ETAP.2019.103239

    Article  CAS  PubMed  Google Scholar 

  114. Masuduzzaman M, Amit SKS, Alauddin M (2018) Utilization of e-waste in concrete and its environmental impact - a review. In: 2018 International Conference on Smart City and Emerging Technology, ICSCET 2018. https://doi.org/10.1109/ICSCET.2018.8537301

    Chapter  Google Scholar 

  115. Doctor G, Dalal E (2017) Awareness and management of e-waste in Ahmedabad. In: ACM International Conference Proceeding Series, vol. Part F128003, pp 359–365. https://doi.org/10.1145/3047273.3047389

    Chapter  Google Scholar 

  116. Sharma M, Joshi S, Kannan D, Govindan K, Singh R, Purohit HC (2020) Internet of Things (IoT) adoption barriers of smart cities’ waste management: an Indian context. J Clean Prod 270:122047. https://doi.org/10.1016/J.JCLEPRO.2020.122047

    Article  Google Scholar 

  117. Wong NWM (2018) Electronic waste governance under ‘one country, two systems’: Hong Kong and Mainland China. Int J Environ Res Public Health 15(11):2347. https://doi.org/10.3390/IJERPH15112347

    Article  PubMed  PubMed Central  Google Scholar 

  118. Xavier LH, Giese EC, Ribeiro-Duthie AC, Lins FAF (2021) Sustainability and the circular economy: a theoretical approach focused on e-waste urban mining. Resour Policy 74:101467. https://doi.org/10.1016/J.RESOURPOL.2019.101467

    Article  Google Scholar 

  119. Mohammadi E, Singh SJ, Habib K (2021) How big is circular economy potential on Caribbean islands considering e-waste? J Clean Prod 317:128457. https://doi.org/10.1016/J.JCLEPRO.2021.128457

    Article  Google Scholar 

  120. Pajunen N, Holuszko ME (2022) Circular economy in electronics and the future of e-waste. Electronic Waste:299–314. https://doi.org/10.1002/9783527816392.CH13

  121. Mustafa FS, Hama Aziz KH (2023) Heterogeneous catalytic activation of persulfate for the removal of rhodamine B and diclofenac pollutants from water using iron-impregnated biochar derived from the waste of black seed pomace. Process Saf Environ Protection 170:436–448. https://doi.org/10.1016/J.PSEP.2022.12.030

    Article  CAS  Google Scholar 

  122. Rahman KO, Aziz KHH (2022) Utilizing scrap printed circuit boards to fabricate efficient Fenton-like catalysts for the removal of pharmaceutical diclofenac and ibuprofen from water. J Environ Chem Eng 10(6):109015. https://doi.org/10.1016/J.JECE.2022.109015

    Article  CAS  Google Scholar 

  123. Hama Aziz KH (2022) Heterogeneous catalytic activation of peroxydisulfate toward degradation of pharmaceuticals diclofenac and ibuprofen using scrap printed circuit board. RSC Adv 13(1):115–128. https://doi.org/10.1039/D2RA07263G

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  124. Ponnamma D et al (2019) Green synthesized materials for sensor, actuator, energy storage and energy generation: a review. 59(1):1–62. https://doi.org/10.1080/25740881.2019.1614327

  125. Krishnamoorthy K, MSP S, Pazhamalai P, Mariappan VK, Mok YS, Kim S-J (2019) A highly efficient 2D siloxene coated Ni foam catalyst for methane dry reforming and an effective approach to recycle the spent catalyst for energy storage applications. J Mater Chem A Mater 7(32):18950–18958. https://doi.org/10.1039/C9TA03584B

    Article  CAS  Google Scholar 

  126. Singh R, Singh H, Farina I, Colangelo F, Fraternali F (2019) On the additive manufacturing of an energy storage device from recycled material. Compos Part B Eng 156:259–265. https://doi.org/10.1016/J.COMPOSITESB.2018.08.080

    Article  CAS  Google Scholar 

  127. Wang H, Dai L, Chai D, Ding Y, Zhang H, Tang J (2020) Recyclable and tear-resistant all-in-one supercapacitor with dynamic electrode/electrolyte interface. J Colloid Interface Sci 561:629–637. https://doi.org/10.1016/J.JCIS.2019.11.038

    Article  CAS  PubMed  ADS  Google Scholar 

  128. Trowell KA, Goroshin S, Frost DL, Bergthorson JM (2020) Aluminum and its role as a recyclable, sustainable carrier of renewable energy. Appl Energy 275:115112. https://doi.org/10.1016/J.APENERGY.2020.115112

    Article  CAS  Google Scholar 

  129. Fan E et al (2020) Sustainable recycling technology for li-ion batteries and beyond: challenges and future prospects. Chem Rev 120(14):7020–7063. https://doi.org/10.1021/ACS.CHEMREV.9B00535

    Article  CAS  PubMed  Google Scholar 

  130. Nwanya AC et al (2020) Zea mays lea silk extract mediated synthesis of nickel oxide nanoparticles as positive electrode material for asymmetric supercabattery. J Alloys Compd 822:153581. https://doi.org/10.1016/J.JALLCOM.2019.153581

    Article  CAS  Google Scholar 

  131. Reddy PNK, Shaik DPMD, Ganesh V, Nagamalleswari D, Thyagarajan K, Prasanth PV (2021) High electrochemical activity of 3D flower like nanostructured TiO2 obtained by green synthesis. Appl Surf Sci 561:150092. https://doi.org/10.1016/J.APSUSC.2021.150092

    Article  Google Scholar 

  132. Nagaraju G, Sekhar SC, Ramulu B, Hussain SKK, Narsimulu D, Yu JS (2020) Ternary MOF-based redox active sites enabled 3D-on-2D nanoarchitectured battery-type electrodes for high-energy-density supercapatteries. Nano-Micro Letters 13(1):1–18. https://doi.org/10.1007/S40820-020-00528-9

    Article  Google Scholar 

  133. Yuan G et al (2019) Microstructure engineering towards porous carbon materials derived from one biowaste precursor for multiple energy storage applications. Electrochim Acta 326:134974. https://doi.org/10.1016/J.ELECTACTA.2019.134974

    Article  CAS  Google Scholar 

  134. Minakshi M, Mitchell D, Jones R, Pramanik N, Jean-Fulcrand A, Garnweitner G (2020) A hybrid electrochemical energy storage device using sustainable electrode materials. ChemistrySelect 5(4):1597. https://doi.org/10.1002/slct.201904553

    Article  CAS  Google Scholar 

  135. Mensah-Darkwa K, Zequine C, Kahol PK, Gupta RK (2019) Supercapacitor energy storage device using biowastes: a sustainable approach to green energy. Sustainability 11(2):414. https://doi.org/10.3390/SU11020414

    Article  CAS  Google Scholar 

  136. Wang X, Tian X, Chen X, Ren L, Geng C (2022) A review of end-of-life crystalline silicon solar photovoltaic panel recycling technology. Sol Energy Mater Sol Cells 248:111976. https://doi.org/10.1016/J.SOLMAT.2022.111976

    Article  CAS  Google Scholar 

  137. Wu Z et al (2019) A high performance flexible recyclable supercapacitor with polyaniline by casting in unconventional proportion. J Power Sources 442:227215. https://doi.org/10.1016/J.JPOWSOUR.2019.227215

    Article  CAS  Google Scholar 

  138. Yanshyna O, Weissman H, Rybtchinski B (2020) Recyclable electrochemical supercapacitors based on carbon nanotubes and organic nanocrystals. Nanoscale 12(16):8909–8914. https://doi.org/10.1039/D0NR00395F

    Article  CAS  PubMed  Google Scholar 

  139. Brunetti F et al (2019) Printed solar cells and energy storage devices on paper substrates. Adv Funct Mater 29(21):1806798. https://doi.org/10.1002/ADFM.201806798

    Article  Google Scholar 

  140. Shi H et al (2020) 3D flexible, conductive, and recyclable Ti3C2TxMXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 14(7):8678–8688. https://doi.org/10.1021/ACSNANO.0C03042/SUPPL_FILE/NN0C03042_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  141. Pathak P, Chabhadiya K (2022) Recycling of rechargeable batteries: a sustainable tool for urban mining. In: Handbook of solid waste management: sustainability through circular economy, pp 1635–1652. https://doi.org/10.1007/978-981-16-4230-2_74/COVER

    Chapter  Google Scholar 

  142. Abdelbasir SM, Hassan SSM, Kamel AH, El-Nasr RS (2018) Status of electronic waste recycling techniques: a review. Environ Sci Pollut Res 25(17):16533–16547. https://doi.org/10.1007/S11356-018-2136-6/FIGURES/2

    Article  Google Scholar 

  143. Lam PTI, Ma R (2019) Potential pitfalls in the development of smart cities and mitigation measures: an exploratory study. Cities 91:146–156. https://doi.org/10.1016/J.CITIES.2018.11.014

    Article  Google Scholar 

  144. Halkos GE, Gkampoura EC (2020) Reviewing usage, potentials, and limitations of renewable energy sources. Energies (Basel) 13(11). https://doi.org/10.3390/EN13112906

  145. Christensen PA et al (2021) Risk management over the life cycle of lithium-ion batteries in electric vehicles. Renew Sustain Energy Rev 148:111240. https://doi.org/10.1016/J.RSER.2021.111240

    Article  Google Scholar 

  146. Ouyang D, Chen M, Huang Q, Weng J, Wang Z, Wang J (2019) A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasures. Applied Sciences 9(12):2483. https://doi.org/10.3390/APP9122483

    Article  CAS  Google Scholar 

  147. Sun J, Mao B, Wang Q (2021) Progress on the research of fire behavior and fire protection of lithium ion battery. Fire Saf J 120:103119. https://doi.org/10.1016/J.FIRESAF.2020.103119

    Article  CAS  Google Scholar 

  148. Wang Q, Mao B, Stoliarov SI, Sun J (2019) A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci 73:95–131. https://doi.org/10.1016/J.PECS.2019.03.002

    Article  Google Scholar 

  149. Sun P, Bisschop R, Niu H, Huang X (2020) A review of battery fires in electric vehicles. Fire Technol 56(4):1361–1410. https://doi.org/10.1007/S10694-019-00944-3/FIGURES/26

    Article  Google Scholar 

  150. Larsson F, Andersson P, Blomqvist P, Mellander BE (2017) Toxic fluoride gas emissions from lithium-ion battery fires. Sci Rep 7(1):1–13. https://doi.org/10.1038/s41598-017-09784-z

    Article  CAS  Google Scholar 

  151. Chithaluru P, Al-Turjman F, Kumar M, Stephan T (2020) I-AREOR: An energy-balanced clustering protocol for implementing green IoT in smart cities. Sustain Cities Soc 61:102254. https://doi.org/10.1016/J.SCS.2020.102254

    Article  Google Scholar 

  152. Teng SY, Touš M, Leong WD, How BS, Lam HL, Máša V (2021) Recent advances on industrial data-driven energy savings: digital twins and infrastructures. Renew Sustain Energy Rev 135:110208. https://doi.org/10.1016/J.RSER.2020.110208

    Article  Google Scholar 

  153. Kazancoglu Y, Ozkan-Ozen YD, Mangla SK, Ram M (2022) Risk assessment for sustainability in e-waste recycling in circular economy. Clean Technol Environ Policy 24(4):1145–1157. https://doi.org/10.1007/S10098-020-01901-3/TABLES/8

    Article  Google Scholar 

Download references

Funding

This work is financially supported by the Ministry of Higher Education through the Fundamental Research Grant Scheme (FRGS/1/2022/STG05/UM/01/2) awarded to Ramesh T Subramaniam and Technology Development Fund 1 (TeD1) from the Ministry of Science, Technology, and Innovation (MOSTI), Malaysia (MOSTI002-2021TED1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pershaanaa, M., Bashir, S., Kumar, S.S.A. et al. Keystones of green smart city—framework, e-waste, and their impact on the environment—a review. Ionics 30, 1267–1289 (2024). https://doi.org/10.1007/s11581-023-05349-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05349-5

Keywords

Navigation