Skip to main content
Log in

Protonic transport in the novel complex oxide Ba5Y0.5In1.5Al2ZrO13 with intergrowth structure

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The perovskite-related oxides with intergrowth structure are a novel and promising class of protonic conductors. The development of this class of materials makes it possible to develop proton-conducting ceramics for intermediate temperatures (300–600 °C) for SOFCs (solid oxide fuel cells) applications. In this work, new complex oxide Ba5Y0.5In1.5Al2ZrO13 was obtained and investigated as a protonic conductor. Ba5Y0.5In1.5Al2ZrO13 shows the ability to water uptake and exhibits higher values of hydration degree (~ 0.40 mol H2O) than parent compound Ba5In2Al2ZrO13 (~ 0.30 mol H2O). IR spectroscopy confirmed the presence of OH-groups in the hydrated phase Ba5Y0.5In1.5Al2ZrO13. The hydration ability is explained by the possibility of increasing the coordination number of barium in oxygen-deficient layers and the presence of sufficient space for the participation of OH-groups in its coordination. Investigation of transport properties shows that in wet air (pH2O = 1.92·10−2 atm) below ~ 700 °C the conductivity is predominantly protonic. Proton mobility calculations show that the introduction of yttrium into the indium sublattice leads to an increase in mobility, which is probably due to an increase in the unit cell volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors upon reasonable request.

References

  1. Steele BHC, Heinzel A (2010) Materials for fuel-cell technologies. Nat 414:345–352. https://doi.org/10.1142/9789814317665_0031

    Article  Google Scholar 

  2. Norby T (2017) Advances in proton ceramic fuel cells, steam electrolyzers, and dehydrogenation reactors based on materials and process optimizations. ECS Trans 80:23–32. https://doi.org/10.1149/08009.0023ecst

    Article  CAS  Google Scholar 

  3. Fabbri E, Pergolesi D, Traversa E (2010) Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev 39:4355–4369. https://doi.org/10.1039/b902343g

    Article  CAS  PubMed  Google Scholar 

  4. Zhang W, Hu Y (2021) Progress in proton-conducting oxides as electrolytes for low-temperature solid oxide fuel cells: From materials to devices. Energy Sci Eng 9:984–1011. https://doi.org/10.1002/ese3.886

    Article  CAS  Google Scholar 

  5. Tarancón A (2009) Strategies for lowering solid oxide fuel cells operating temperature. Energies 2:1130–1150. https://doi.org/10.3390/en20401130

    Article  CAS  Google Scholar 

  6. Meng Y, Gao J, Zhao Z, Amoroso J, Tong J, Brinkman KS (2019) Review: recent progress in low-temperature proton-conducting ceramics. J Mater Sci 54:9291–9312. https://doi.org/10.1007/s10853-019-03559-9

    Article  CAS  Google Scholar 

  7. Wachsman ED, Lee KT (2010) Lowering the temperature of solid oxide fuel cells. Sci 334:935–939. https://doi.org/10.1126/science.1204090

    Article  CAS  Google Scholar 

  8. Medvedev D (2019) Trends in research and development of protonic ceramic electrolysis cells. Int J Hydrog Energy 44:26711–26740. https://doi.org/10.1016/j.ijhydene.2019.08.130

    Article  CAS  Google Scholar 

  9. Jing Y, Matsumoto H, Aluru N (2018) Mechanistic insights into hydration of solid oxides. Chem Mater 30:138–144. https://doi.org/10.1021/acs.chemmater.7b03476

    Article  CAS  Google Scholar 

  10. Putilov L, Tsidilkovski V (2019) Impact of bound ionic defects on hydration of acceptor-doped proton-conducting perovskites. Phys Chem Chem Phys 21:6391–6406. https://doi.org/10.1039/C8CP07745B

    Article  CAS  PubMed  Google Scholar 

  11. Kim J, Sengodan S, Kim S, Kwon O, Bud Y, Kim G (2019) Proton conducting oxides: a review of materials and applications for renewable energy conversion and storage. Renew Sustain Energy Rev 109:606–618. https://doi.org/10.1016/j.rser.2019.04.042

    Article  CAS  Google Scholar 

  12. Kuzmin AV, Stroeva AYu, Gorelov VP, Novikova YuV, Lesnichyova AS, Farlenkov AS, Khodimchuk AV (2019) Synthesis and characterization of dense protonconducting La1-xSrxScO3-α ceramics. Int J Hydrog Energy 44:1130–1138. https://doi.org/10.1016/j.ijhydene.2018.11.041

    Article  CAS  Google Scholar 

  13. Kuzmin AV, Lesnichyova AS, Tropin ES, Stroeva AYu, Vorotnikov VA, Solodyankina DM, Belyakov SA, Plekhanov MS, Farlenkov AS, Osinkin DA, Beresnev SM, Ananyev MV (2020) LaScO3-based electrolyte for protonic ceramic fuel cells: Influence of sintering additives on the transport properties and electrochemical performance. J Power Sources 466:228255. https://doi.org/10.1016/j.jpowsour.2020.228255

    Article  CAS  Google Scholar 

  14. Hossain MK, Biswas MC, Chanda RK, Rubel MHK, Khan MI, Hashizume K (2021) A review on experimental and theoretical studies of perovskite barium zirconate proton conductors. Emergent Mater 4:999–1027. https://doi.org/10.1007/s42247-021-00230-5

    Article  CAS  Google Scholar 

  15. Fronzi M, Tateyama Y, Marzari N, Nolan M, Traversa E (2016) First-principles molecular dynamics simulations of proton diffusion in cubic BaZrO3 perovskite under strain conditions. Mater Renew Sustain Energy 5:14. https://doi.org/10.1007/s40243-016-0078-9

    Article  Google Scholar 

  16. Kochetova N, Animitsa I, Medvedev D, Demin A, Tsiakaras P (2016) Recent activity in the development of proton-conducting oxides for high-temperature applications. RSC Adv 6:73222–73268. https://doi.org/10.1039/C6RA13347A

    Article  CAS  Google Scholar 

  17. Fisher C, Islam M (1999) Defect, protons and conductivity in brownmillerite-structured Ba2In2O5. Solid State Ionics 118:355–363. https://doi.org/10.1016/S0167-2738(98)00391-9

    Article  CAS  Google Scholar 

  18. Jalarvo N, Haavik C, Kongshaug C, Norby P, Norby T (2009) Conductivity and water uptake of Sr4(Sr2Nb2)O11·nH2O and Sr4(Sr2Ta2)O11·nH2O. Solid State Ionics 180:1151–1156. https://doi.org/10.1016/j.ssi.2009.05.021

    Article  CAS  Google Scholar 

  19. Tarasova N, Animitsa, (2022) I Materials AIILnInO4 with Ruddlesden-Popper structure for electrochemical applications: relationship between ion (oxygen-ion, proton) conductivity, water uptake, and structural changes. Materials 15:114. https://doi.org/10.3390/ma15010114

    Article  CAS  Google Scholar 

  20. Zhou Y, Shiraiwa M, Nagao M, Fujii K, Tanaka I, Yashima M, Baque L, Basbus J, Mogni L, Skinner S (2021) Protonic conduction in the BaNdInO4 structure achieved by acceptor doping. Chem Mater 33:2139–2146. https://doi.org/10.1021/acs.chemmater.0c04828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gurudeo N, Dharmendra Y, Shail U (2020) Ruddlesden-Popper phase A2BO4 oxides: recent studies on structure, electrical, dielectric, and optical properties. J Adv Ceram 9:29–148. https://doi.org/10.1007/s40145-020-0365-x

    Article  CAS  Google Scholar 

  22. Armstrong AR, Anderson PA (1994) Synthesis and structure of a new layered niobium blue bronze: Rb2LaNb2O7. Inorg Chem 33:4366–4369. https://doi.org/10.1021/ic00097a026

    Article  CAS  Google Scholar 

  23. Hayden AE, Lingling M, Ram S, Anthony KC (2021) Layered Double Perovskites. Annu Rev Mater Res 51:351–380. https://doi.org/10.1146/annurev-matsci-092320-102133

    Article  CAS  Google Scholar 

  24. Fop S, McCombie K, Wildman E, Skakle J, Irvine J, Connor P, Savaniu C, Ritter C, Mclaughlin A (2020) High oxide ion and proton conductivity in a disordered hexagonal perovskite. Nat Mater 19:752–757. https://doi.org/10.1038/s41563-020-0629-4

    Article  CAS  PubMed  Google Scholar 

  25. Fop S, Dawson J, Fortes A, Ritter C, Mclaughlin A (2021) Hydration and ionic conduction mechanisms of hexagonal perovskite derivatives. Chem Mater 33:4651–4660. https://doi.org/10.1021/acs.chemmater.1c01141

    Article  CAS  Google Scholar 

  26. Unti LFK, Grzebielucka EC, Chinelatto ASA, Mather GC, Chinelatto AL (2019) Synthesis and electrical characterization of Ba5Nb4O15 and Ba5Nb3.9M0.1O(15-δ) (M= Ti, Zr) hexagonal perovskites. Ceram Int 45:5087–5092. https://doi.org/10.1016/j.ceramint.2018.11.211

    Article  CAS  Google Scholar 

  27. Tabacaru C, Aguadero A, Sanz J, Chinelatto AL, Thursfield A, Pérez-Coll D, Mather GC (2013) Protonic and electronic defects in the 12R-type hexagonal perovskite Sr3LaNb3O12. Solid State Ionics 253:239–246. https://doi.org/10.1016/j.ssi.2013.10.031

    Article  CAS  Google Scholar 

  28. Murakami T, Hester J, Yashima M (2020) high proton conductivity in Ba5Er2Al2ZrO13, a hexagonal perovskite-related oxide with intrinsically oxygen-deficient layers. J Am Chem Soc 142:11653–11657. https://doi.org/10.1021/jacs.0c02403

    Article  CAS  PubMed  Google Scholar 

  29. Andreev R, Korona D, Anokhina I, Animitsa I (2022) Proton and oxygen-ion conductivities of hexagonal perovskite Ba5In2Al2ZrO13. Materials 15:3944. https://doi.org/10.3390/ma15113944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andreev RD, Korona DV, Anokhina IA, Animitsa IE (2022) Novel Nb5+-doped hexagonal perovskite Ba5In2Al2ZrO13 (structure, hydration, electrical conductivity). Chimica Techno Acta 9:20229414. https://doi.org/10.15826/chimtech.2022.9.4.14

    Article  CAS  Google Scholar 

  31. Shpanchenko R, Abakumov A, Antipov E, Kovba L (1994) Crystal structure of Ba5In2Al2ZrO13. J Alloy Compd 206:185–188. https://doi.org/10.1016/0925-8388(94)90033-7

    Article  CAS  Google Scholar 

  32. Shpanchenko RV, Abakumov AM, Antipov EV, Nistor L, Van Tendeloo G, Amelinckx S (1995) Structural study of the new complex oxides Ba5-ySryR2-xAl2Zr1+xO13+x/2 (R = Gd-Lu, Y, Sc). J Solid State Chem 118:180–192. https://doi.org/10.1006/jssc.1995.1329

    Article  CAS  Google Scholar 

  33. Fop S, McCombie KS, Wildman EJ, Skakle JMS, Mclaughlin AC (2019) Hexagonal perovskite derivatives: a new direction in the design of oxide ion conducting materials. Chem Commun 55:2127–2137. https://doi.org/10.1039/C8CC09534E

    Article  CAS  Google Scholar 

  34. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallogr 32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  35. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New York

    Google Scholar 

  36. Yukhnevich GV (1973) Infrared spectroscopy of water. Nauka, Moscow (in Russian)

    Google Scholar 

  37. Colomban P, Romain F, Neiman A, Animitsa I (2001) Double perovskites with oxygen structural vacancies: Raman spectra, conductivity and water uptake. Solid State Ionics 145:339–347. https://doi.org/10.1016/S0167-2738(01)00929-8

    Article  CAS  Google Scholar 

  38. Bhella SS, Thangadurai V (2009) Synthesis and characterization of carbon dioxide and boiling water stable proton conducting double perovskite-type metal oxides. J Power Sources 186:311–319. https://doi.org/10.1016/j.jpowsour.2008.09.110

    Article  CAS  Google Scholar 

  39. Tarasova NA, Galisheva AO, Animitsa IE (2019) The local structure and hydration processes of halogen-substituted perovskites based on Ba4In2Zr2O11. Opt Spectrosc 126:336–340. https://doi.org/10.1134/S0030400X19040222

    Article  CAS  Google Scholar 

  40. Novak A (1974) Hydrogen bonding in solids correlation of spectroscopic and crystallographic data. In: Large molecules. structure and bonding, vol 18. Springer Berlin, Heidelberg, pp 177–217 https://doi.org/10.1007/BFb0116438

  41. Kreuer KD (1999) Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 125:285–302. https://doi.org/10.1016/S0167-2738(99)00188-5

    Article  CAS  Google Scholar 

  42. Haugsrud R (2016) High temperature proton conductors – fundamentals and functionalities. In: Diffusion foundations, vol 8. Trans Tech Publications Ltd, Stäfa, pp 31–79 https://doi.org/10.4028/www.scientific.net/DF.8.31

  43. Kreuer KD, Fuchs A, Maier J (1992) HD isotope effect of proton conductivity and proton conduction mechanism in oxides. Solid State Ionics 77:157–162. https://doi.org/10.1016/0167-2738(94)00265-T

    Article  Google Scholar 

  44. Kreuer K, Adams S, Fuchs W, Klock U, Maier J (2001) Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics 145:295–306. https://doi.org/10.1016/S0167-2738(01)00953-5

    Article  CAS  Google Scholar 

  45. Matsumoto H, Kawasaki Y, Ito N, Enoki M, Ishihara T (2007) Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants, electrochem. Solid-State Lett 10:B77–B80. https://doi.org/10.1149/1.2458743

    Article  CAS  Google Scholar 

  46. Tarasova N, Bedarkova A (2022) Advanced Proton-Conducting Ceramics Based on Layered Perovskite BaLaInO4 for Energy Conversion Technologies and Devices. Materials 15:6841. https://doi.org/10.3390/ma15196841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Okuyama Y, Kozai T, Ikeda S, Matsuka M, Takaaki S, Matsumoto H (2014) Incorporation and conduction of proton in Sr-doped LaMO3 (M=Al, Sc, In, Yb, Y). Electrochim Acta 125:443–449. https://doi.org/10.1016/j.electacta.2014.01.113

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation and the Government of Sverdlovsk region, Joint Grant 22–23-20003 https://rscf.ru/en/project/22-23-20003/

Author information

Authors and Affiliations

Authors

Contributions

Andreev Roman: methodology, investigation, formal analysis, writing—original draft preparation, writing—review and editing. Animitsa Irina: conceptualization, methodology, writing—original draft preparation, writing—review and editing.

Corresponding author

Correspondence to Roman D. Andreev.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 194 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, R.D., Animitsa, I.E. Protonic transport in the novel complex oxide Ba5Y0.5In1.5Al2ZrO13 with intergrowth structure. Ionics 29, 4647–4658 (2023). https://doi.org/10.1007/s11581-023-05187-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05187-5

Keywords

Navigation