Skip to main content
Log in

Impact of nitrile incorporated with hydroxyl, benzyl, and allyl on physicochemical properties of propanenitrile imidazolium-based dual functionalized ionic liquids

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The non-volatility, controllable characteristics of ionic liquids (ILs) make them potential materials for various applications. The use of functionalized ionic liquids can improve their physicochemical properties. Propanenitrile imidazolium-based ionic liquids (C2CN Rim) with different functional groups, R (allyl, ethoxyl, and benzyl), and incorporating dioctylsulfosuccinate (DOSS) anion were prepared. The elemental analysis and 13C and 1H NMR results confirmed the synthesized IL structures. The density, viscosity, and refractive index of these ILs were measured over a temperature range of 293.15 to 353.15 K. Furthermore, several thermodynamic properties including the thermal expansion coefficient, molar refraction, standard molar entropy, and lattice energy were estimated for these ILs. Findings show that ILs have lower densities, similar refractive indices, higher viscosities, and lower decomposition temperature compared to their analogous incorporating only nitrile functionality. Also, the ILs showed a weak temperature dependency on the thermal expansion coefficients, αp = 4.75 × 10−4 to 5.25 × 10−4 K−1. These findings provide valuable insights into the properties and potential applications of propanenitrile imidazolium-based ionic liquids incorporating DOSS anion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

Data availability

Any further datasets will be available upon requesting the first author: taha_a@rcjy.edu.sa.

References 

  1. Zeng S et al (2017) Ionic-liquid-based CO2 capture systems: structure, interaction and process. Chem Rev 117(14):9625–9673

    Article  CAS  PubMed  Google Scholar 

  2. Newington I, Perez-Arlandis JM, Welton T (2007) Ionic liquids as designer solvents for nucleophilic aromatic substitutions. Org Lett 25:5247–5250

    Article  Google Scholar 

  3. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084

    Article  CAS  PubMed  Google Scholar 

  4. Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72:1391–1398

    Article  CAS  Google Scholar 

  5. Teodoro RM et al (2018) Mixing poly (ionic liquid)s and ionic liquids with different cyano anions: membrane forming ability and CO2/N2 separation properties. J Membr Sci 552:341–348

    Article  CAS  Google Scholar 

  6. Zhang S, Dokko K, Watanabe M (2015) Porous ionic liquids: synthesis and application. Chem Sci 6(7):3684–3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hollóczki O, Nyulászi L (2011) Neutral species from “non-protic” N-heterocyclic ionic liquids. Org Biomol Chem 9(8):2634–2640

    Article  PubMed  Google Scholar 

  8. Zubeir LF et al (2015) Solubility and diffusivity of CO2 in the ionic liquid 1-butyl-3-methylimidazolium tricyanomethanide within a large pressure range (0.01 MPa to 10 MPa). J Chem Eng Data 60:1544–1562

    Article  CAS  Google Scholar 

  9. Ziyada AK, Wilfred CD (2014) Effect of temperature and anion on densities, viscosities, and refractive indices of 1-octyl-3-propanenitrile imidazolium-based ionic liquids. J Chem Eng Data 59(5):1385–1390

    Article  CAS  Google Scholar 

  10. Dong K et al (2017) Multiscale studies on ionic liquids. Chem Rev 117(10):6636–6695

    Article  CAS  PubMed  Google Scholar 

  11. Karadas F, Atilhan M, Aparicio S (2010) Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy Fuels 24:5817–5828

    Article  CAS  Google Scholar 

  12. Yu G et al (2006) Design of task-specific ionic liquids for capturing CO2: a molecular orbital study. Ind Eng Chem Res 45(8):2875–2880

    Article  CAS  Google Scholar 

  13. Bates ED et al (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124(6):926–927

    Article  CAS  PubMed  Google Scholar 

  14. Bara J et al (2009) Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc Chem Res 43(1):152–159

    Article  Google Scholar 

  15. Egashira M et al (2007) Functionalized imidazolium ionic liquids as electrolyte components of lithium batteries. J Power Sources 174(2):560–564

    Article  CAS  Google Scholar 

  16. Zhang J et al (2007) Solubilities of the gaseous and liquid solutes and their thermodynamics of solubilization in the novel room-temperature ionic liquids at infinite dilution by gas chromatography. J Chem Eng Data 52(6):2277–2283

    Article  CAS  Google Scholar 

  17. Ando M et al (2023) Physical properties and low-frequency polarizability anisotropy and dipole responses of phosphonium bis (fluorosulfonyl) amide ionic liquids with pentyl, ethoxyethyl, or 2-(ethylthio) ethyl group. J Phys Chem B 127(2):542–556

    Article  CAS  PubMed  Google Scholar 

  18. Aljasmi A et al (2022) Dependency of physicochemical properties of imidazolium bis (trifluoromethylsulfonyl) imide-based ionic liquids on temperature and alkyl chain. J Chem Eng Data 67(4):858–868

    Article  CAS  Google Scholar 

  19. Liu Q-S et al (2015) Density, dynamic viscosity, and electrical conductivity of two hydrophobic functionalized ionic liquids. J Chem Thermodyn 90:39–45

    Article  CAS  Google Scholar 

  20. Liu Q-S, Liu H, Mou L (2016) Properties of 1-(cyanopropyl)-3-methylimidazolium bis [(trifluoromethyl) sulfonyl] imide. Acta Phys Chim Sin 32(3):617–623

    Article  CAS  Google Scholar 

  21. Choi SY et al (2011) Dual functional ionic liquids as plasticisers and antimicrobial agents for medical polymers. Green Chem 13(6):1527–1535

    Article  CAS  Google Scholar 

  22. Fei Z et al (2006) From dysfunction to bis-function: on the design and applications of functionalised ionic liquids. Chem–A Euro J 12(8):2122–2130

    Article  CAS  Google Scholar 

  23. Grøssereid I et al (2019) New dual functionalized zwitterions and ionic liquids; Synthesis and cellulose dissolution studies. J Mol Liq 292:111353

    Article  Google Scholar 

  24. Zhang X, Liang Y, Liang Y, Liu H (2019) Synthesis and application of imidazolium-based functionalized ionic liquids as catalyst for Knoevenagel condensation reaction. J Mol Liq 276:1–7

    CAS  Google Scholar 

  25. Ding F et al (2014) Highly efficient and reversible SO2 capture by surfactant-derived dual functionalized ionic liquids with metal chelate cations. Ind Eng Chem Res 53(48):18568–18574

    Article  CAS  Google Scholar 

  26. Zhang Y et al (2009) Dual amino functionalised phosphonium ionic liquids for CO2 capture. Chem–A Euro J 15(12):3003–3011

    Article  CAS  Google Scholar 

  27. Egashira M et al (2004) The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte. J Power Sources 138(1–2):240–244

    Article  CAS  Google Scholar 

  28. Egashira M et al (2005) Cyano-containing quaternary ammonium-based ionic liquid as a ‘co-solvent’for lithium battery electrolyte. J Power Sources 146(1–2):685–688

    Article  CAS  Google Scholar 

  29. Hardacre C et al (2008) Ionic liquid characteristics of 1-alkyl-n-cyanopyridinium and 1-alkyl-n-(trifluoromethyl) pyridinium salts. New J Chem 32(11):1953–1967

    Article  CAS  Google Scholar 

  30. Ziyada AK et al (2010) Thermophysical properties of 1-propyronitrile-3-alkylimidazolium bromide ionic liquids at temperatures from (293.15 to 353.15) K. J Chem Eng Data 55:3886–3890

    Article  CAS  Google Scholar 

  31. Zhao D, Fei Z, Scopelliti R, Dyson PJ (2004) Synthesis and characterization of ionic liquids incorporating the nitrile functionality. Inorg Chem 43:2197–2205

    Article  CAS  PubMed  Google Scholar 

  32. Ziyada AK, Wilfred CD (2014) Physical properties of ionic liquids consisting of 1-butyl-3-propanenitrile-and 1-decyl-3-propanenitrile imidazolium-based cations: temperature dependence and influence of the anion. J Chem Eng Data 59:1232–1239

    Article  CAS  Google Scholar 

  33. Muhammad N et al (2012) Thermophysical properties of dual functionalized imidazolium-based ionic liquids. J Chem Eng Data 57(3):737–743

    Article  CAS  Google Scholar 

  34. Ziyada AK et al (2011) Effect of sulfonate-based anions on the physicochemical properties of 1-alkyl-3-propanenitrile imidazolium ionic liquids. New J Chem 35:1111–1116

    Article  CAS  Google Scholar 

  35. Ziyada AK et al (2011) Densities, viscosities, and refractive indices of 1-hexyl-3-propanenitrile imidazolium ionic liquids incorporated with sulfonate-based anions. J Chem Eng Data 56(5):2343–2348

    Article  CAS  Google Scholar 

  36. Shiflett MB, Yokozeki A (2007) Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N]. J Phys Chem B 111(8):2070–2074

    Article  CAS  PubMed  Google Scholar 

  37. Tsunashima K et al (2009) Thermal and transport properties of ionic liquids based on benzyl-substituted phosphonium cations. J Phy Chem B 113(48):15870–15874

    Article  CAS  Google Scholar 

  38. Fillion JJ et al (2016) Phase transitions, decomposition temperatures, viscosities, and densities of phosphonium, ammonium, and imidazolium ionic liquids with aprotic heterocyclic anions. J Chem Eng Data 61:2897–2914

    Article  CAS  Google Scholar 

  39. Breitbach ZS, Armstrong DW (2008) Characterization of phosphonium ionic liquids through a linear solvation energy relationship and their use as GLC stationary phases. Anal Bioanal Chem 390(6):1605–1617

    Article  CAS  PubMed  Google Scholar 

  40. Bhattacharjee A et al (2015) Thermophysical properties of phosphonium-based ionic liquids. Fluid Phase Equilib 400:103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Q et al (2007) Physicochemical properties of nitrile-functionalized ionic liquids. J Phys Chem B 111:2864–2872

    Article  CAS  PubMed  Google Scholar 

  42. Hasse B et al (2009) Viscosity, Interfacial tension, density, and refractive index of ionic liquids [EMIM][MeSO3], [EMIM][MeOHPO2], [EMIM][OcSO4] and [BBIM][NTf2] in dependence on temperature at atmospheric pressure. J Chem Eng Data 54(9):2576–2583

    Article  CAS  Google Scholar 

  43. Arshad MW (2009) CO2 capture using Ionic Liquids (Master's thesis, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark)

  44. Tokuda H et al (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109(13):6103–6110

    Article  CAS  PubMed  Google Scholar 

  45. Dong K, Zhang S, Wang J (2016) Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions. Chem Commun 52:6744–6764

    Article  CAS  Google Scholar 

  46. Ziyada AK et al (2010) Thermophysical properties of 1-propyronitrile-3-alkylimidazolium bromide ionic liquids at temperatures from (293.15 to 353.15) K. J Chem Eng Data 55(9):3886–3890

    Article  CAS  Google Scholar 

  47. Tariq M et al (2009) Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: effect of temperature, alkyl chain length, and anion. J Chem Thermodyn 41:790–798

    Article  CAS  Google Scholar 

  48. Galán Sánchez LM, Meindersma GW, De Haan AB (2007) Solvent properties of functionalized ionic liquids for CO2 absorption. Chem Eng Res Des 85(1):31–39

    Article  Google Scholar 

  49. Okoturo O, VanderNoot T (2004) Temperature dependence of viscosity for room temperature ionic liquids. J Electroanal Chem 568:167–181

    Article  CAS  Google Scholar 

  50. Yunus NM et al (2010) Thermophysical properties of 1-alkylpyridinum bis(trifluoromethylsulfonyl)imide ionic liquids. J Chem Thermodyn 42:491–495

    Article  CAS  Google Scholar 

  51. Kilaru P, Baker GA, Scovazzo P (2007) Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids: data and correlations. J Chem Eng Data 52(6):2306–2314

    Article  CAS  Google Scholar 

  52. Gu Z, Brennecke JF (2002) Volume expansivities and isothermal compressibilities of Imidazolium and Pyridinium-based ionic liquids. J Chem Eng Data 47:339–345

    Article  CAS  Google Scholar 

  53. Chhotaray PK, Jella S, Gardas RL (2014) Physicochemical properties of low viscous lactam based ionic liquids. J Chem Thermodyn 74:255–262

    Article  CAS  Google Scholar 

  54. Rocha MA et al (2013) Thermophysical properties of [CN− 1C1im][PF6] ionic liquids. J Mol Liq 188:196–202

    Article  CAS  Google Scholar 

  55. Othman Zailani NHZ et al (2020) Thermophysical properties of newly synthesized ammonium-based protic ionic liquids: effect of temperature, anion and alkyl chain length. Processes 8(6):742

    Article  Google Scholar 

  56. Ullah Z et al (2015) Synthesis and thermophysical properties of hydrogensulfate based acidic ionic liquids. J Solution Chem 44:875–889

    Article  CAS  Google Scholar 

  57. Xu A et al (2013) Effect of substituent groups in anions on some physicochemical properties of 1-butyl-3-methylimidazolium carboxylate ionic liquids. J Chem Eng Data 58(9):2496–2501

    Article  CAS  Google Scholar 

  58. Losetty V, Chennuri BK, Gardas RL (2015) Thermophysical and spectroscopic study of pure N-methylcyclohexylammonium based ionic liquids. J Chem Thermodyn 90:251–258

    Article  CAS  Google Scholar 

  59. Glasser L (2004) Lattice and phase transition thermodynamics of ionic liquids Thermochim. Acta 421:87–93

    CAS  Google Scholar 

  60. Fang DW, Guan W, Tong J, Wang ZW, Yang JZ (2008) Study on physicochemical properties of ionic liquids based on alanine [Cnmim]Ala (n = 2,3,4,5,6). J Phys Chem B 112:7499–7505

    Article  CAS  PubMed  Google Scholar 

  61. Dean PM, Pringle JM, MacFarlane DR (2010) Structural analysis of low melting organic salts: perspectives on ionic liquids. Phys Chem Chem Phys 12(32):9144–9153

    Article  CAS  PubMed  Google Scholar 

  62. Glasser L, Jenkins HDB (2004) Standard absolute entropies, S298, from volume or density Part II Organic liquids and solids. Thermochim Acta 414:125–130

    Article  CAS  Google Scholar 

  63. Pereiro AB et al (2006) Temperature dependence of physical properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate. J Chem Eng Data 51:952–954

    Article  CAS  Google Scholar 

  64. Ben Ghanem O et al (2015) Studies on the physicochemical properties of ionic liquids based on 1-octyl-3-methylimidazolium amino acids. J Chem Eng Data 60(6):1756–1763

    Article  CAS  Google Scholar 

Download references

Funding

This work is funded by the Deanship of Scientific Research at Najran University and the grant ID is NU/RG/SERC/12/5.

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation, A.K.Z., A.O., F.R., and A.A.E.; writing—review and editing, F.R., A.O., A.M.K., and M.M.A.O.; references preparation, A.M.K., project administration, A.O.; supervision, C.D.W.; funding acquisition, A.O. and F.R.; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Fahd Rajab.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 234 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziyada, A.K., Osman, A., Elbashir, A.A. et al. Impact of nitrile incorporated with hydroxyl, benzyl, and allyl on physicochemical properties of propanenitrile imidazolium-based dual functionalized ionic liquids. Ionics 29, 4067–4076 (2023). https://doi.org/10.1007/s11581-023-05106-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05106-8

Keywords

Navigation