Skip to main content
Log in

Development and characterization of a biomaterial (Centella Asiatica Leaf)-based electrolyte for electrochemical devices

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Biomaterial, Centella Asiatica Leaf (CAL), has been developed as a bio-membrane electrolyte with ammonium thiocyanate (NH4SCN) by the solution casting method for proton conducting electrochemical devices. The amorphous/crystalline nature of the prepared bio-membranes has been analyzed using XRD. DSC measurement has been used to find the Tg of the membranes. AC impedance measurement shows 1 g CAL + 0.7 M. wt% NH4SCN bio-membrane possesses a high proton conductivity value of 9.31 ± 0.25 × 10−3 S/cm at ambient temperature. Transport parameters have been calculated for the prepared bio-membranes. SEM and thermal stability (TGA) measurements have been made for pure CAL and the highest conducting bio-membranes. The tensile strength of the highest conducting bio-membrane has been estimated by mechanical strength analysis. The electrochemical stability of 2.05 V has been found for the highest proton-conducting bio-membrane using LSV. The primary proton battery and PEM fuel cell with the highest proton conducting bio-membrane show an OCV of 1.55 V and 448 mV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The data will be available from the corresponding author on reasonable request.

References

  1. Liu Z (2015) Global energy interconnection. Academic Press

    Google Scholar 

  2. Breyer C, Bogdanov D, Aghahosseini A, Gulagi A, Fasihi M (2020) On the techno-economic benefits of a global energy interconnection. Econ Energy Environ Policy 9(1):83–103

    Google Scholar 

  3. Luo B, Ye D, Wang L (2017) Recent progress on integrated energy conversion and storage systems. Adv Sci 4(9):1700104

    Google Scholar 

  4. Teo LP, Buraidah MH, Arof AK (2021) Development on solid polymer electrolytes for electrochemical devices. Molecules 26(21):6499

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Avellaneda CO, Vieira DF, Al-Kahlout A, Leite ER, Pawlicka A, Aegerter MA (2007) Solid-state electrochromic devices with Nb2O5: Mo thin film and gelatin-based electrolyte. Electrochim Acta 53(4):1648–1654

    CAS  Google Scholar 

  6. Rajeswari N, Selvasekarapandian S, Sanjeeviraja C, Kawamura J, Asath Bahadur S (2014) A study on polymer blend electrolyte based on PVA/PVP with proton salt. Polym Bull 71(5):1061–1080

    CAS  Google Scholar 

  7. Alipoori S, Mazinani S, Aboutalebi SH, Sharif F (2020) Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges. J Energy Storage 27:101072

    Google Scholar 

  8. Quartarone E, Mustarelli P, Magistris A (1998) PEO-based composite polymer electrolytes. Solid State Ionics 110(1–2):1–14

    CAS  Google Scholar 

  9. Selvalakshmi S, Mathavan T, Selvasekarapandian S, Premalatha M (2018) Effect of ethylene carbonate plasticizer on agar-agar: NH 4 Br-based solid polymer electrolytes. Ionics 24:2209–2217

    CAS  Google Scholar 

  10. Bolto B, Tran T, Hoang M, Xie Z (2009) Crosslinked poly (vinyl alcohol) membranes. Prog Polym Sci 34(9):969–981

    CAS  Google Scholar 

  11. Rahmawati S, Radiman CL, Martoprawiro MA, Nuryanti S (2020) Density functional theory (DFT) and Natural Bond Orbital (NBO) investigation of intra/intermolecular hydrogen bond interaction in sulfonated nata-de coco-water (NDCS-(H2O) n). J Comput Theor Nanosci 17(6):2812–2819

    CAS  Google Scholar 

  12. Alatawi NS, Abdelghany AM, Elsayed NH (2017) The correlation between density functional theory (DFT) and spectroscopic investigations of PVA/PVP nanocomposites containing gold nanoparticles. Res J Pharm Biol Chem Sci 8(3):263–272

    CAS  Google Scholar 

  13. Yan T, Zou Y, Zhang X, Li D, Guo X, Yang D (2021) Hydrogen bond interpenetrated agarose/PVA network: a highly ionic conductive and flame-retardant gel polymer electrolyte. ACS Appl Mater Interfaces 13(8):9856–9864

    CAS  PubMed  Google Scholar 

  14. Francis KMG, Subramanian S, Shunmugavel K, Naranappa V, Pandian SSM, Nadar SC (2016) Lithium ion-conducting blend polymer electrolyte based on PVA–PAN doped with lithium nitrate. Polym-Plast Technol Eng 55(1):25–35

    CAS  Google Scholar 

  15. Maheshwari T, Tamilarasan K, Selvasekarapandian S, Chitra R, Muthukrishnan M (2022) Synthesis and characterization of Dextran, poly (vinyl alcohol) blend biopolymer electrolytes with NH4NO3, for electrochemical applications. Int J Green Energy 19(3):314–330

    CAS  Google Scholar 

  16. Chitra R, Sathya P, Selvasekarapandian S, Monisha S, Moniha V, Meyvel S (2019) Synthesis and characterization of iota-carrageenan solid biopolymer electrolytes for electrochemical applications. Ionics 25(5):2147–2157

    CAS  Google Scholar 

  17. Maithilee K, Sathya P, Selvasekarapandian S, Chitra R, Krishna MV, Meyvel S (2022) Na-ion conducting biopolymer electrolyte based on tamarind seed polysaccharide incorporated with sodium perchlorate for primary sodium-ion batteries. Ionics 28(4):1783–1790

    CAS  Google Scholar 

  18. Mal N, Satpati G, Raghunathan S, Davoodbasha M (2022) Current strategies on algae-based biopolymer production and scale-up. Chemosphere 289:133178

    CAS  PubMed  Google Scholar 

  19. Muniraj Vignesh N, Jayabalakrishnan SS, Selvasekarapandian S, Aafrin Hazaana S, Kavitha P, Vengadesh Krishna M (2022) Proton-conducting Moringa oleifera seed-based biomaterial electrolyte for electrochemical applications. Ionics 29(1):331–344

    Google Scholar 

  20. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–an updated report. Saudi Pharm J 24(4):473–484

    PubMed  Google Scholar 

  21. Rai S, Acharya-Siwakoti E, Kafle A, Devkota HP, Bhattarai A (2021) Plant-derived saponins: a review of their surfactant properties and applications. Sci 3(4):44

    Google Scholar 

  22. Gray NE, Alcazar Magana A, Lak P, Wright KM, Quinn J, Stevens JF, ..., Soumyanath A (2018) Centella asiatica: phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem Rev 17(1):161–194

  23. Zahara K, Bibi Y, Tabassum S (2021) 01. Clinical and therapeutic benefits of Centella asiatica. Pur Appl Biol (PAB) 3(4):152–159

    Google Scholar 

  24. Kumar GP, Kumar PP (2022) Proximate analysis and phytochemical Extraction from Centella asiatica and its analysis by HPLC method. J Acad Ind Res (JAIR) 10(3):26–29

    CAS  Google Scholar 

  25. Wannasarit S, Puttarak P, Kaewkroek K, Wiwattanapatapee R (2019) Strategies for improving healing of the gastric epithelium using oral solid dispersions loaded with pentacyclic triterpene–rich Centella extract. AAPS PharmSciTech 20(7):1–13

    CAS  Google Scholar 

  26. Bylka W, Znajdek-Awiżeń P, Studzińska-Sroka E, Brzezińska M (2013) Centella asiatica in cosmetology. Adv Dermatol Allergol/Postępy Dermatologii i Alergologii 30(1):46–49

    Google Scholar 

  27. Ogunka-Nnoka CU, Igwe FU, Agwu J, Peter OJ, Wolugbom PH (2020) Nutrient and phytochemical composition of Centella asiatica leaves. Med Aromat Plants (Los Angeles) 9(346):2167–412

    Google Scholar 

  28. Chong NJ, Aziz Z, Jhala V, Thaker VS (2011) A systematic review on the chemical constituents of Centella asiatica. Res J Pharm Biol Chem Sci 2(3):445–459

    Google Scholar 

  29. Naachiyar RM, Ragam M, Selvasekarapandian S, Krishna MV, Buvaneshwari P (2021) Development of biopolymer electrolyte membrane using Gellan gum biopolymer incorporated with NH4SCN for electro-chemical application. Ionics 27(8):3415–3429

    CAS  Google Scholar 

  30. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Hemalatha R, Boopathi G (2018) Synthesis and characterization of bio-polymer electrolyte based on iota-carrageenan with ammonium thiocyanate and its applications. J Solid State Electrochem 22(10):3209–3223

    CAS  Google Scholar 

  31. Vanitha N, Shanmugapriya C, Selvasekarapandian S, Naachiyar RM, Krishna MV, Aafrin Hazaana S, ..., Ramaswamy M (2022) Effect of graphene quantum dot on sodium alginate with ammonium formate (NH4HCO2) biopolymer electrolytes for the application of electrochemical devices. Ionics 28(6):2731–2749

  32. Liew CW, Ramesh S, Arof AK (2014) Good prospect of ionic liquid based-poly (vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. Int J Hydrogen Energy 39(6):2953–2963

    CAS  Google Scholar 

  33. Noor IS, Majid SR, Arof AK (2013) Poly (vinyl alcohol)–LiBOB complexes for lithium–air cells. Electrochim Acta 102:149–160

    CAS  Google Scholar 

  34. Sivadevi S, Selvasekarapandian S, Karthikeyan S, Sanjeeviraja C, Nithya H, Iwai Y, Kawamura J (2015) Proton-conducting polymer electrolyte based on PVA-PAN blend doped with ammonium thiocyanate. Ionics 21(4):1017–1029

    CAS  Google Scholar 

  35. Macdonald JR (ed) (1987) Impedance Spectroscopy. John Wiley & Sons, New York, pp 12–23

    Google Scholar 

  36. Boukamp BA (1986) A package for impedance/admittance data analysis. Solid State Ionics 18:136–140

    Google Scholar 

  37. Karthikeyan S, Sikkanthar S, Selvasekarapandian S, Arunkumar D, Nithya H, Kawamura J (2016) Structural, electrical and electrochemical properties of polyacrylonitrile-ammonium hexaflurophosphate polymer electrolyte system. J Polym Res 23(3):1–10

    CAS  Google Scholar 

  38. Ravi M, Bhavani S, Kumar KK, Rao VN (2013) Investigations on electrical properties of PVP: KIO4 polymer electrolyte films. Solid State Sci 19:85–93

    CAS  Google Scholar 

  39. Vijaya N, Selvasekarapandian S, Hirankumar G, Karthikeyan S, Nithya H, Ramya CS, Prabu M (2012) Structural, vibrational, thermal, and conductivity studies on proton-conducting polymer electrolyte based on poly (N-vinylpyrrolidone). Ionics 18(1):91–99

    CAS  Google Scholar 

  40. Aafrin Hazaana S, Joseph A, Selvasekarapandian S, Meera Naachiyar R, Vengadesh Krishna M, Muniraj Vignesh N (2023) Development and characterization of biopolymer electrolyte based on gellan gum (GG) with lithium chloride (LiCl) for the application of electrochemical devices. Polym Bull 80(5):5292–5311

    Google Scholar 

  41. Arof AK, Naeem M, Hameed F, Jayasundara WJMJSR, Careem MA, Teo LP, Buraidah MH (2014) Quasi solid state dye-sensitized solar cells based on polyvinyl alcohol (PVA) electrolytes containing I-/I 3-redox couple. Opt Quant Electron 46(1):143–154

    CAS  Google Scholar 

  42. Selvalakshmi S, Vijaya N, Selvasekarapandian S, Premalatha M (2017) Biopolymer agar-agar doped with NH4SCN as solid polymer electrolyte for electrochemical cell application. J Appl Polym Sci 134(15):44702

    Google Scholar 

  43. Majid SR, Arof AK (2005) Proton-conducting polymer electrolyte films based on chitosan acetate complexed with NH4NO3 salt. Phys B: Condens Matter 355(1–4):78–82

    CAS  Google Scholar 

  44. Chandra MVL, Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S (2017) Study of PVAc-PMMA-LiCl polymer blend electrolyte and the effect of plasticizer ethylene carbonate and nanofiller titania on PVAc-PMMA-LiCl polymer blend electrolyte. J Polym Eng 37(6):617–631

    Google Scholar 

  45. Gomathinayagam V, Venkataraman R (2015) Standardization of Centella Asiatica (L.) urban with market potential using thermal methods of analysis. J Pharmacogn Phytochem 3(5):32–34

    Google Scholar 

  46. Kadir MFZ, Hamsan MH (2018) Green electrolytes based on dextran-chitosan blend and the effect of NH 4 SCN as proton provider on the electrical response studies. Ionics 24:2379–2398

    CAS  Google Scholar 

  47. Maitra MG, Sinha M, Mukhopadhyay AK, Middya TR, De U, Tarafdar S (2007) Ion-conductivity and Young’s modulus of the polymer electrolyte PEO–ammonium perchlorate. Solid State Ionics 178(3–4):167–171

    CAS  Google Scholar 

  48. Mouro C, Fangueiro R, Gouveia IC (2020) Preparation and characterization of electrospun double-layered nanocomposites membranes as a carrier for Centella asiatica (L.). Polymers 12(11):2653

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Shukur MF, Kadir MFZ (2015) Electrical and transport properties of NH4Br-doped cornstarch-based solid biopolymer electrolyte. Ionics 21(1):111–124

    CAS  Google Scholar 

  50. Maheshwari T, Tamilarasan K, Selvasekarapandian S, Chitra R, Kiruthika S (2021) Investigation of blend biopolymer electrolytes based on Dextran-PVA with ammonium thiocyanate. J Solid State Electrochem 25(3):755–765

    CAS  Google Scholar 

  51. Monisha S, Mathavan T, Selvasekarapandian S, Benial AMF, Aristatil G, Mani N, Premalatha M (2017) Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohyd Polym 157:38–47

    CAS  Google Scholar 

  52. Chandra MV, Karthikeyan S, Selvasekarapandian S, Pandi DV, Monisha S, Packiaseeli SA (2016) Characterization of high ionic conducting PVAc–PMMA blend-based polymer electrolyte for electrochemical applications. Ionics 22(12):2409–2420

    CAS  Google Scholar 

  53. Muthukrishnan M, Shanthi C, Selvasekarapandian S, Premkumar R (2023) Biodegradable flexible proton conducting solid biopolymer membranes based on pectin and ammonium salt for electrochemical applications. Int J Hydrog Energy 48(14):5387–5401

    CAS  Google Scholar 

  54. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270

    CAS  PubMed  Google Scholar 

  55. Vanitha N, Shanmugapriya C, Selvasekarapandian S, Krishna MV, Nandhini K (2022) Investigation of N-S-based graphene quantum dot on sodium alginate with ammonium thiocyanate (NH4SCN) biopolymer electrolyte for the application of electrochemical devices. J Mater Sci: Mater Electron 33(18):14847–14867

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabeetha, T., Chandra, M.V.L., Selvasekarapandian, S. et al. Development and characterization of a biomaterial (Centella Asiatica Leaf)-based electrolyte for electrochemical devices. Ionics 29, 3155–3171 (2023). https://doi.org/10.1007/s11581-023-05094-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05094-9

Keywords

Navigation