Skip to main content
Log in

Crystal structure and dynamic oxygen sorption/desorption behavior of the Sr(Co0.9Nb0.1)O3-δ oxide targeting oxygen enrichment application

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The Sr(Co0.9M0.1)O3-δ (M = Co, Y, Nb) composite oxides were prepared by the simple solid-state reaction method, and the pure Sr(Co0.9Nb0.1)O3-δ (M = Nb) perovskite-type oxide was obtained. It was further characterized by the powder X-ray diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA), and scanning electron microscope/energy-dispersive X-ray spectra (SEM/EDX) techniques and demonstrated that the structural stability of the perovskite-type Sr(Co0.9Nb0.1)O3-δ oxide is improved greatly by Nb cation doping. The high-temperature oxygen sorption/desorption properties of the perovskite-type Sr(Co0.9Nb0.1)O3-δ were studied by TG in a flowing air stream between 350 and 950 ℃, and a high oxygen sorption capacity of 10.5 mL O2 (STP)/g oxide was obtained for the Sr(Co0.9Nb0.1)O3-δ oxide.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Diniz da Costa JC (2008) Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 320:13

    Article  CAS  Google Scholar 

  2. Qiu Z, Hu Y, Tan X, Hashim SS, Sunarso J, Liu SM (2018) Oxygen permeation properties of novel BaCo0.85Bi0.05Zr0.1O3−δ hollow fibre membrane. Chem Eng Sci 177:18

    Article  CAS  Google Scholar 

  3. Arnold M, Wang HH, Feldhoff A (2007) Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. J Membr Sci 293:44

    Article  CAS  Google Scholar 

  4. Yi JX, Feng SJ, Zuo YB, Liu W, Chen CS (2005) Oxygen permeability and stability of Sr0.95Co0.8Fe0.2O3−δ in a CO2- and H2O-containing atmosphere. Chem Mater 17:5856

    Article  CAS  Google Scholar 

  5. Xu MG, Sun HN, Wang W, Shen YJ, Zhou W, Wang J, Shao ZP, Chen ZG (2020) Scandium and phosphorus co-doped perovskite oxides as high-performance electrocatalysts for the oxygen reduction reaction in an alkaline solution. J Mater Sci Technol 39:22

    Article  CAS  Google Scholar 

  6. Li C, Li W, Chew JJ, Liu SM, Zhu X, Sunarso J (2020) Oxygen permeation through single-phase perovskite membrane: modeling study and comparison with the dual-phase membrane. Sep Purif Technol 235:116224

    Article  CAS  Google Scholar 

  7. Lu H, Zhu LL, Kim JP, Son SH, Park JH (2012) Structural, sintering, and electrical properties of Cr-doped La0.6Sr0.4CrxFe1-xO3-δ (x = 0.10, 0.20) oxides. J Mater Sci Technol 28:654

    Article  CAS  Google Scholar 

  8. Liu YB, Sun QC, Duan T, Liu CY, Cheng HW (2023) Enhanced stability of perovskite Pr0.6Sr0.4Fe0.9Nb0.1O3-δ oxygen transport membrane for water splitting. Ionics 29:1267

    Article  CAS  Google Scholar 

  9. Lu H, Cong Y, Yang WS (2006) Oxygen permeability and stability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as an oxygen-permeable membrane at high pressures. Solid State Ionics 177:595

    Article  CAS  Google Scholar 

  10. Sowjanya C, Pratihar SK (2021) Electrical transport behavior of La0.5Sr0.5Co0.2-xAlxFe0.8O3-δ (x = 0–0.2) perovskite oxides. Ionics 27:4333

    Article  CAS  Google Scholar 

  11. Jin WQ, Li SG, Huang P, Xu NP, Shi J (2000) Fabrication of La0.2Sr0.8Co0.8Fe0.2O3−δ mesoporous membranes on porous supports from polymeric precursors. J Membr Sci 170:9

    Article  CAS  Google Scholar 

  12. Babakhani EG, Towfighi J, Nazari K (2010) Synthesis of BSCFO ceramics membrane using a simple complexing method and experimental study of sintering parameters. J Mater Sci Technol 26:914

    Article  CAS  Google Scholar 

  13. Wang ZG, Chen TJ, Dewangan N, Li ZW, Das S, Pati S, Li Z, Lin JYS, Kawi S (2020) Catalytic mixed conducting ceramic membrane reactors for methane conversion. React Chem Eng 5:1868

    Article  CAS  Google Scholar 

  14. He YF, Zhu XF, Yang WS (2010) The role of A‐site ion nonstoichiometry in the oxygen absorption properties of Sr1+xCo0.8Fe0.2O3 oxides. AIChE J. 57:87

    Article  Google Scholar 

  15. Lu H, Son SH, Kim JP, Park JH (2011) Novel SrCo1-2x(Fe,Nb)xO3-δ (x = 0.05, 0.10) oxides targeting CO2 capture and O2 enrichment: structural stability and oxygen sorption properties. Mater Lett 65:2858

    Article  CAS  Google Scholar 

  16. Lu Y, Zhao HL, Cheng X, Jia YB, Du XF, Fang MY, Du ZH, Zheng K, Świerczek K (2015) Novel cobalt-free BaFe1−xGdxO3−δ perovskite membranes for oxygen separation. J Mater Chem A 3:6202

    Article  CAS  Google Scholar 

  17. He YF, Zhu XF, Li QM, Yang WS (2009) Perovskite oxide absorbents for oxygen separation. AIChE J 55:3125

    Article  CAS  Google Scholar 

  18. Kusaba H, Sakai G, Shimanoe K, Miura N, Yamazoe N (2002) Oxygen-sorptive and -desorptive properties of perovskite-related oxides under temperature-swing conditions for oxygen enrichment. Solid State Ionics 152:689

    Article  Google Scholar 

  19. de la Calle C, Aguadero A, Alonso JA, Fernandez-Diaz MT (2008) Correlation between reconstructive phase transitions and transport properties from SrCoO2.5 brownmillerite: a neutron diffraction study. Solid State Sci. 10:1924

    Article  Google Scholar 

  20. Huang C, Chen DJ, Lin Y, Ran R, Shao ZP (2010) Evaluation of Ba0.6Sr0.4Co0.9Nb0.1O3−δ mixed conductor as a cathode for intermediate-temperature oxygen-ionic solid-oxide fuel cells. J Power Sources 195:5176

    Article  CAS  Google Scholar 

  21. Zhang K, Ran R, Ge L, Shao ZP, Jin WQ, Xu NP (2008) Systematic investigation on new SrCo1−yNbyO3−δ ceramic membranes with high oxygen semi-permeability. J Membr Sci 323:436

    Article  CAS  Google Scholar 

  22. Lu H, Son SH, Kim JP, Park JH (2011) A Fe/Nb co-doped Sr(Co0.8Fe0.1Nb0.1)O3-δ perovskite oxide for air separation: structural, sintering and oxygen permeating properties. Mater Lett 65:702

    Article  CAS  Google Scholar 

  23. Deng ZQ, Liu W, Chen CS, Lu H, Yang WS (2004) Germanium and iron co-substituted SrCoO2.5+δ as oxygen permeable membrane. Solid State Ionics 170:187

    Article  CAS  Google Scholar 

  24. Lu H, Deng ZQ, Tong JH, Yang WS (2005) Oxygen permeability and structural stability of Zr-doped oxygen-permeable Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane. Mater Lett 59:2285

    Article  CAS  Google Scholar 

  25. Cheng YF, Zhao HL, Teng DQ, Li FS, Lu XG, Ding WZ (2008) Investigation of Ba fully occupied A-site BaCo0.7Fe0.3−xNbxO3−δ perovskite stabilized by low concentration of Nb for oxygen permeation membrane. J Membr Sci 322:484

    Article  CAS  Google Scholar 

  26. Ito W, Nagai T, Sakon T (2007) Oxygen separation from compressed air using a mixed conducting perovskite-type oxide membrane. Solid State Ionics 178:809

    Article  CAS  Google Scholar 

  27. Fang SM, Yoo CY, Bouwmeester HJM (2011) Performance and stability of niobium-substituted Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Solid State Ionics 195:1

    Article  CAS  Google Scholar 

  28. Lu H, Zhu LL, Kim JP, Son SH, Park JH (2012) Structural stability and sintering properties of Fe/Nb/Ti co-substituted strontium cobaltate Sr(Co0.8Fe0.1Nb0.1)1-xTixO3-δ (x = 0.00, 0.20, 0.40) oxides. J Mater Sci 47:2169

    Article  CAS  Google Scholar 

  29. Lin HQ, Lu H, Cao SY, Gui JZ, Liu D, Park JH (2017) Perovskite-type (Ba0.15Sr0.85)(B0.15Co0.85)O3-δ (B = Ti, Nb) oxides: structural stability, oxygen nonstoichiometry, and oxygen sorption/desorption properties. Ionics 23:717

    Article  CAS  Google Scholar 

  30. Lu H, Zhang JN, Zhang QP, Gui JZ (2020) Novel Ba0.15Sr0.85M0.15Fe0.85O3-δ (M = Fe, Co, Al, Ti) perovskite oxides for oxygen enrichment: structural, electrical, and oxygen sorption/desorption properties. Mater Sci Eng B 262:114686

    Article  CAS  Google Scholar 

  31. Miura N, Ikeda H, Tsuchida A (2016) Sr1–xCaxFeO3-δ as a new oxygen sorbent for the high-temperature pressure-swing adsorption process. Ind Eng Chem Res 55:3091

    Article  CAS  Google Scholar 

  32. Lu H, Zhang QP, Liu RZ, Gui JZ (2021) Oxidative coupling of methane over SrO/La2O3 catalyst in an oxygen-permeable separation membrane reactor. Catal Lett 151:1805

    Article  CAS  Google Scholar 

  33. Chen GX, Feldhoff A, Weidenkaff A, Li C, Liu SM, Zhu XF, Sunarso J, Huang K, Wu XY, Ghoniem AF, Yang WS, Xue J, Wang HH, Shao ZP, Duffy JH, Brinkman KS, Tan XY, Zhang Y, Jiang HQ, Costa R, Friedrich KA, Kriegel R (2022) Roadmap for sustainable mixed ionic-electronic conducting membranes. Adv Func Mater 32:2105702

    Article  CAS  Google Scholar 

  34. Wang ZG, Bian ZF, Dewangan N, Xu J, Kawi S (2019) High-performance catalytic perovskite hollow fiber membrane reactor for oxidative propane dehydrogenation. J Membr Sci 578:36

    Article  CAS  Google Scholar 

  35. Lu H, Zhang H, Wang H, Yang XJ (2022) Functional (Ba0.5Sr0.5)(Co0.8Fe0.2-xCrx)O3-δ (x=0.00, 0.05, 0.10) oxides for membrane-based air separation at high temperatures: structural evolution, oxygen permeability and transporting mechanism. Ionics 28:823

    Article  CAS  Google Scholar 

  36. Weber V, Meffert M, Wagner S, Störmer H, Unger LS, Ivers-Tiffée E, Gerthesen D (2020) Influence of B-site doping with Ti and Nb on microstructure and phase constitution of (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ. J Mater Sci 55:947

    Article  CAS  Google Scholar 

  37. Magnone E, Seo MJ, Kim HJ, Park JH (2014) Thermal characterization and compatibility studies of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) oxide with Cr2O3 at high temperatures. J Therm Anal Calorim 116:215

    Article  CAS  Google Scholar 

  38. Jaiswal SK, Kumar J (2021) On the X-ray photoelectron spectra, oxygen permeability, and electrical conductivity variations in (Ba0.5Sr0.5)(ZnηFe1-η)O3-ξ(η = 0, 0.2) system. Ionics 27:1323

    Article  CAS  Google Scholar 

Download references

Acknowledgements

HL gratefully acknowledges the financial support provided by the NSFC of China (No. 21676264), the open project of State Key Laboratory of Separation Membrane and Membrane Processes (No. M202104), the key scientific research projects (No. 22B150020) of Henan provincial colleges, the Excellent High-Level Talents Program, the Henan Provincial Engineering Research Center and Xinyang Municipal Key Laboratory grants (Xinyang University) at Xinyang University, the Innovation and Entrepreneurship Training Program for Undergraduates of Henan Province (S202213503003), and the key scientific research projects (Nos. 2022-XJLZD-002 and 2022-DXSLZD-001) of Xinyang University, P. R. China.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by HL and HZ. HL, HZ, and XJY analyzed experimental data. All authors reviewed and edited the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Hui Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Zhang, H., Yang, X. et al. Crystal structure and dynamic oxygen sorption/desorption behavior of the Sr(Co0.9Nb0.1)O3-δ oxide targeting oxygen enrichment application. Ionics 29, 3185–3191 (2023). https://doi.org/10.1007/s11581-023-05086-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05086-9

Keywords

Navigation