Skip to main content

Advertisement

Log in

A flexible supercapacitor based on bamboo shoot-like NiCo2Se4 hollow nanostructure

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The electrochemical performance of the electrode material for supercapacitor is influenced by several factors and could be facilitated by a particular morphology. A reasonable morphology can provide more active sites and larger specific surface area, and increase the ion transport rate. Herein, NiCo2Se4 with hollow nanobamboo shoot (NBS) structure is prepared by a two-step hydrothermal process and the formation of hollow structure is due to the Kirkendall effect. The NiCo2Se4 synthesized with optimal conditions achieves a high specific capacitance of 6.21 F cm−2 at a current density of 1 mA cm−2, and the cycling stability of NiCo2Se4 is as high as 76% after 5000 cycles at 20 mA cm−2. The designed NiCo2Se4//AC supercapacitor can achieve an energy density of 24.9 Wh kg−1 at a power density of 537.04 W kg−1. All of the above demonstrate that NiCo2Se4 bamboo shoot-like structure has a promising application in supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors are unable or have chosen not to specify which data has been used.

References

  1. Yang WD, Zhao RD, Guo FY et al (2023) Interface engineering of hybrid ZnCo2O4@Ni2.5Mo6S6.7 structures for flexible energy storage and alkaline water splitting. Chem Eng J 454:140458. https://doi.org/10.1016/j.cej.2022.140458

    Article  CAS  Google Scholar 

  2. Yang WD, Zhao RD, Xiang J et al (2022) 3D hierarchical ZnCo2S4@Ni(OH)2 nanowire arrays with excellent flexible energy storage and electrocatalytic performance. J Colloid Interface Sci 626:866–878. https://doi.org/10.1016/j.jcis.2022.07.020

    Article  CAS  PubMed  Google Scholar 

  3. Yang R, Zhang Y, Huang X et al (2022) In-situ growth of KCu7S4@CoMoO4 core-shell structure on Ni foam for high performance supercapacitor electrode. J Alloys Compd 927:166996. https://doi.org/10.1016/j.jallcom.2022.166996

    Article  CAS  Google Scholar 

  4. Dai SG, Zhang ZF, Xu JM et al (2019) In situ Raman study of nickel bicarbonate for high-performance energy storage device. Nano Energy 64:103919. https://doi.org/10.1016/j.nanoen.2019.103919

    Article  CAS  Google Scholar 

  5. Xu WN, Dai SG, Liu GL et al (2016) CuO nanoflowers growing on carbon fiber fabric for flexible high-performance supercapacitors. Electrochim Acta 203:1–8. https://doi.org/10.1016/j.electacta.2016.03.170

    Article  CAS  Google Scholar 

  6. Yang WD, Xiang J, Zhao RD et al (2023) Nanoengineering of ZnCo2O4@CoMoO4 heterogeneous structures for supercapacitor and water splitting applications. Ceram Int 49:4422–4434. https://doi.org/10.1016/j.ceramint.2022.09.329

    Article  CAS  Google Scholar 

  7. Cui D, Zhao R, Dai J et al (2020) A hybrid NiCo2O4@NiMoO4 structure for overall water splitting and excellent hybrid energy storage. Dalton Trans 49:9668–9679. https://doi.org/10.1039/D0DT02021D

    Article  CAS  PubMed  Google Scholar 

  8. Wang T, Chen HC, Yu F et al (2019) Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Stor Mater 16:545–573. https://doi.org/10.1016/j.ensm.2018.09.007

    Article  Google Scholar 

  9. Li X, Wu HJ, Guan C et al (2018) (Ni,Co)Se2/NiCo-LDH core/shell structural electrode with the cactus-like (Ni,Co)Se2 core for asymmetric supercapacitors. Small 15(3):1803895. https://doi.org/10.1002/smll.201803895

    Article  CAS  Google Scholar 

  10. Yue LG, Chen L, Liu X et al (2022) Honeycomb-like biomass carbon with planted CoNi3 alloys to form hierarchical composites for high-performance supercapacitors. J Colloid Interface Sci 608(3):2602–2612. https://doi.org/10.1016/j.jcis.2021.10.184

    Article  CAS  PubMed  Google Scholar 

  11. Zhao R, Cui D, Dai J et al (2020) Morphology controllable NiCo2O4 nanostructure for excellent energy storage device and overall water splitting. Sustain Mater Technol 24:e00151. https://doi.org/10.1016/j.susmat.2020.e00151

    Article  CAS  Google Scholar 

  12. Yewale MA, Kadam RA, Kaushik NK et al (2022) Electrochemical supercapacitor performance of NiCo2O4 nanoballs structured electrodes prepared via hydrothermal route with varying reaction time. Colloids Surf A Physicochem Eng Asp 653:129901. https://doi.org/10.1016/j.colsurfa.2022.129901

    Article  CAS  Google Scholar 

  13. Liu L, Chen T, Rong H et al (2018) NiCo2S4 nanosheets network supported on Ni foam as an electrode for hybrid supercapacitors. J Alloys Compd 766:149–156. https://doi.org/10.1016/j.jallcom.2018.06.374

    Article  CAS  Google Scholar 

  14. Li S, Ruan YJ, Xie Q (2020) Morphological modulation of NiCo2Se4 nanotubes through hydrothermal selenization for asymmetric supercapacitor. Electrochimica Acta 356:136837. https://doi.org/10.1016/j.electacta.2020.136837

    Article  CAS  Google Scholar 

  15. Zhang X, Lu W, Tian YH et al (2022) Nanosheet-assembled NiCo-LDH hollow spheres as high-performanceelectrodes for supercapacitors. J Colloid Interface Sci 606(2):1120–1127. https://doi.org/10.1016/j.jcis.2021.08.094

    Article  CAS  PubMed  Google Scholar 

  16. Chhowalla M, Shin HS, Eda G et al (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275. https://doi.org/10.1038/nchem.1589

    Article  PubMed  Google Scholar 

  17. Meng AL, Shen T, Huang TQ et al (2020) NiCoSe2/Ni3Se2 lamella arrays grown on N-doped graphene nanotubes with ultrahigh-rate capability and long-term cycling for asymmetric supercapacitor. Sci China Mater 63:229–239. https://doi.org/10.1007/s40843-019-9587-5

    Article  CAS  Google Scholar 

  18. Lu Z, Hu Z, Xiao L et al (2022) Battery-type Ni-Co-Se hollow microspheres cathode materials enabled by bifunctional N-doped carbon quantum dots with ultrafast electrochemical kinetics for hybrid supercapacitors. Chem Eng J 450:138347. https://doi.org/10.1016/j.cej.2022.138347

    Article  CAS  Google Scholar 

  19. Yun X, Lu T, Zhou R et al (2021) Heterostructured NiSe2/CoSe2 hollow microspheres as battery-type cathode for hybrid supercapacitors: Electrochemical kinetics and energy storage mechanism. Chem Eng J 426:131328. https://doi.org/10.1016/j.cej.2021.131328

    Article  CAS  Google Scholar 

  20. Hou LR, Shi YY, Wu C et al (2018) Monodisperse metallic NiCoSe2 hollow sub-microspheres: formation process, intrinsic charge-storage mechanism, and appealing pseudocapacitance as highly conductive electrode for electrochemical supercapacitors. Adv Funct Mater 28(13):1705921. https://doi.org/10.1002/adfm.201705921

    Article  CAS  Google Scholar 

  21. Zhang YJ, Li T, Cao SA et al (2020) NiCo2Se4 hierarchical microflowers of nanosheets and nanorods as pseudocapacitive Mg-storage materials. ACS Sustain Chem Eng 8(7):2964–2972. https://doi.org/10.1021/acssuschemeng.9b07592

    Article  CAS  Google Scholar 

  22. Zardkhoshoui AM, Davarani SSH, Asgharinezhad AA (2019) Designing graphene-wrapped NiCo2Se4 microspheres with petal-like FeS2 toward flexible asymmetric all-solid-state supercapacitors. Dalton Trans 48:4274–4282. https://doi.org/10.1039/C9DT00009G

    Article  Google Scholar 

  23. Amin BG, Masud J, Nath M (2019) Facile one-pot synthesis of NiCo2Se4-rGO on Ni foam for high performance hybrid supercapacitors. RSC Adv 9:37939–37946. https://doi.org/10.1039/C9RA06439G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Y, Yang R, Zhang KY et al (2023) Morphology modulation of NiCo2S4 arrays in-situ growth on carbon cloth for high performance flexible supercapacitor electrode. Mater Res Bull 157:112036. https://doi.org/10.1016/j.materresbull.2022.112036

    Article  CAS  Google Scholar 

  25. Zhang Y, Xue YG, Yang R et al (2021) Rational design of KCu7S4@NiCo2O4 in-situ growth on nickel foam for high performance supercapacitor electrode. J Alloys Compd 898:162791. https://doi.org/10.1016/j.jallcom.2021.162791

    Article  CAS  Google Scholar 

  26. Yuan Y, Li Z, Shi ZC et al (2020) A facile way to grow NiMn-LDH sheets on KCu7S4 nanowires with synergistic effects for applications in hybrid supercapacitors. J Alloys Compd 825:154056. https://doi.org/10.1016/j.jallcom.2020.154056

    Article  CAS  Google Scholar 

  27. Xu KB, Ren QL, Liu Q et al (2015) Design and synthesis of 3D hierarchical NiCo2S4@MnO2 core–shell nanosheet arrays for high-performance pseudocapacitors. RSC Adv 5:44642–44647. https://doi.org/10.1039/C5RA05554G

    Article  CAS  Google Scholar 

  28. Zhu HL, Jiang R, Chen XQ et al (2017) 3D nickel-cobalt diselenide nanonetwork for highly efficient oxygen evolution. Sci Bull (Beijing) 62(20):1373–1379. https://doi.org/10.1016/j.scib.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  29. Liu WW, Jiang W, Liu YC et al (2020) Platinum-free ternary metallic selenides as nanostructured counter electrode for high-efficiency dye-sensitized solar cell by interface engineering. ACS Appl Energy Mater 3(4):3704–3713. https://doi.org/10.1021/acsaem.0c00172

    Article  CAS  Google Scholar 

  30. Zhou CC, Zhang PL, Liu JZ et al (2021) Hierarchical NiCo2Se4 nanoneedles/nanosheets with N-doped 3D porous graphene architecture as free-standing anode for superior sodium ion batteries. J Colloid Interface Sci 587:260–270. https://doi.org/10.1016/j.jcis.2020.12.015

    Article  CAS  PubMed  Google Scholar 

  31. Chen HC, Chen S, Fan MQ et al (2015) Bimetallic nickel cobalt selenides: a new kind of electroactive material for high-power energy storage. J Mater Chem A 3:23653–23659. https://doi.org/10.1039/C5TA08366D

    Article  CAS  Google Scholar 

  32. Wang QF, Ma Y, Wu YL et al (2017) Flexible asymmetric threadlike supercapacitors based on NiCo2Se4 nanosheet and NiCo2O4/polypyrrole electrodes. ChemSusChem 10(7):1427–1435. https://doi.org/10.1002/cssc.201700149

    Article  CAS  PubMed  Google Scholar 

  33. Xiong XH, Waller G, Ding D et al (2015) Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 16:71–80. https://doi.org/10.1016/j.nanoen.2015.06.018

    Article  CAS  Google Scholar 

  34. Li YG, Tan B, Wu YY (2006) Freestanding mesoporous quasi-single-crystalline Co3O4 nanowire arrays. J Am Chem Soc 128(44):14258–14259. https://doi.org/10.1021/ja065308q

    Article  CAS  PubMed  Google Scholar 

  35. Tiruneh SN, Kang BK, Kwag SH et al (2018) Synergistically active NiCo2S4 nanoparticles coupled with holey defect graphene hydrogel for high-performance solid-state supercapacitors. Chem A Eur J 24(13):3263–3270. https://doi.org/10.1002/chem.201705445

    Article  CAS  Google Scholar 

  36. Wang S, Zhang P, Liu C (2021) Synthesis of hierarchical bimetallic sulfide NiCo2S4 for high-performance supercapacitors. Colloids Surf A Physicochem Eng Asp 616:126334. https://doi.org/10.1016/j.colsurfa.2021.126334

    Article  CAS  Google Scholar 

  37. Ouyang Y, Huang RJ, Xia XF et al (2019) Hierarchical structure electrodes of NiO ultrathin nanosheets anchored to NiCo2O4 on carbon cloth with excellent cycle stability for asymmetric supercapacitors. Chem Eng J 355:416–427. https://doi.org/10.1016/j.cej.2018.08.142

    Article  CAS  Google Scholar 

  38. Wang SX, Zou YJ, Xu F et al (2021) Morphological control and electrochemical performance of NiCo2O4@NiCo layered double hydroxide as an electrode for supercapacitors. J Energy Storage 41:102862. https://doi.org/10.1016/j.est.2021.102862

    Article  Google Scholar 

  39. Kour M, Verma S, Mahajan P et al (2023) Highly stable electrodeposited 2D Mn0.2Co0.8LDH nanoplatelets based symmetric supercapacitor electrode. Mater Sci Eng B 293:116488. https://doi.org/10.1016/j.mseb.2023.116488

    Article  CAS  Google Scholar 

  40. Ahmad M, Hussain I, Nawaz T et al (2022) Comparative study of ternary metal chalcogenides (MX; M= Zn–Co–Ni; X= S, Se, Te): formation process, charge storage mechanism and hybrid supercapacitor. J Power Sources 534:231414. https://doi.org/10.1016/j.jpowsour.2022.231414

    Article  CAS  Google Scholar 

  41. Ding H, Zhao S, Wang X et al (2023) Simple fabrication of (CoFe)Se2@NC electrode materials derived from MOF materials and the electrochemical properties for supercapacitor. Colloids Surf A Physicochem Eng Asp 668:131462. https://doi.org/10.1016/j.colsurfa.2023.131462

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (51564009), Natural Science Foundation of Guangxi Province (2018GXNSFAA138041 and 2018JJA160029), the Foundation of Key Lab New Processing Technology for Non-ferrous Metals & Materials Ministry of Education (22KF-2, 20AA-17), the Innovation Project of Guangxi Graduate Education (YCSW2022321), the Research Start-up Funds from Guilin University of Technology and Guangxi Key Laboratory in Universities of Clean Metallurgy and Comprehensive Utilization for Non-ferrous Metals Resources.

Funding

National Natural Science Foundation of China (51564009), Natural Science Foundation of Guangxi Province (2018GXNSFAA138041 and 2018JJA160029), Foundation of Key Lab New Processing Technology for Non-ferrous Metals & Materials Ministry of Education (22KF-2, 20AA-17), Innovation Project of Guangxi Graduate Education (YCSW2022321)

Author information

Authors and Affiliations

Authors

Contributions

Rui Yang, Xian Huang wrote the main manuscript text; Yu Zhang, Yiyan Mo collected data; Huiqun Yin, Shuoping Chen prepared all figures; Kaiyou Zhang, Aimiao Qin, and Shuge Dai edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Kaiyou Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Zhang, Y., Huang, X. et al. A flexible supercapacitor based on bamboo shoot-like NiCo2Se4 hollow nanostructure. Ionics 29, 3353–3363 (2023). https://doi.org/10.1007/s11581-023-05061-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05061-4

Keywords

Navigation