Skip to main content

Advertisement

Log in

Three-dimensional synergistic ionic-electronic conductor host assisted high-performance Zn metal battery

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The current booming request of sustainable and renewable energy storage systems is promoting the recent renaissance of zinc (Zn) metal batteries. However, the irregular dendrite growth on the Zn anode prevents the further application of Zn metal batteries. In this paper, a three-dimensional (3D) synergistic ionic-electronic conductor (CT-B) host was prepared from carbonized tea leaf (CT) mixed with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized bacterial cellulose nanofibers (O-BCNFs) adsorbed with Zn2+ ions, to regulate Zn plating behavior on the anode of aqueous Zn metal batteries. The as-prepared 3D CT-B contains uniformly distributed N, F co-doped carbon that is beneficial to charge transfer, and O-BCNFs contributing to facilitated ionic transport. The 3D skeleton not only provide pathways for ionic and electronic transport but also renders favorable mechanical flexibility, significantly elevating the electrochemical performance of the as-prepared Zn metal battery. The 3D porous CT-B host allows smooth and dense Zn deposition even at a high capacity of 6 mAh cm−2, while delivering a stable operation over 500 cycles with average Coulombic efficiency (CE) as high as 99.3%. When coupled with NaV3O8·1.5H2O (NVO) cathode, the as-fabricated CT-B@Zn//NVO battery delivers a long lifespan of 250 cycles at 2 A g−1. This work opens a new avenue to recycle biowaste to assemble 3D ionic/electronic conductor host, allowing further construction of durable and sustainable Zn metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data available on request.

References

  1. Jiao S, Ren X, Cao R, Engelhard MH, Liu Y, Hu D et al (2018) Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat Energy 3:739–746. https://doi.org/10.1038/s41560-018-0199-8

    Article  CAS  Google Scholar 

  2. Zheng J, Kim MS, Tu Z, Choudhury S, Tang T, Archer LA (2020) Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem Soc Rev 49:2701–2750. https://doi.org/10.1039/c9cs00883g

    Article  CAS  PubMed  Google Scholar 

  3. Chen L, Fan X, Ji X, Chen J, Hou S, Wang C (2019) High-energy Li metal battery with lithiated host. Joule 3(3):732–744. https://doi.org/10.1016/j.joule.2018.11.025

    Article  CAS  Google Scholar 

  4. Chen Z, Zhao J, He Q, Li M, Feng S, Wang Y et al (2022) Texture control of commercial Zn foils prolongs their reversibility as aqueous battery anodes. ACS Energy Lett 7(10):3564–3571. https://doi.org/10.1021/acsenergylett.2c01920

    Article  CAS  Google Scholar 

  5. Zhou J, Xie M, Wu F, Mei Y, Hao Y, Li L et al (2022) Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv Mater 34(1):2106897. https://doi.org/10.1002/adma.202106897

    Article  CAS  Google Scholar 

  6. Hao J, Li X, Zeng X, Li D, Mao J, Guo Z (2020) Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ Sci 13:3917–3949. https://doi.org/10.1039/d0ee02162h

    Article  CAS  Google Scholar 

  7. Wang Y, Xu X, Yin J, Huang G, Guo T, Tian Z et al (2023) MoS2-mediated epitaxial plating of Zn metal anodes. Adv Mater 35(6):e2208171. https://doi.org/10.1002/adma.202208171

    Article  CAS  PubMed  Google Scholar 

  8. Tian H, Yang JL, Deng Y, Tang W, Liu R, Xu C et al (2022) Steel anti-corrosion strategy enables long-cycle Zn anode. Adv Energy Mater 13(1):2202603. https://doi.org/10.1002/aenm.202202603

    Article  CAS  Google Scholar 

  9. Li X, Li Q, Hou Y, Yang Q, Chen Z, Huang Z et al (2021) Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor. ACS Nano 15(9):14631–14642. https://doi.org/10.1021/acsnano.1c04354

    Article  CAS  PubMed  Google Scholar 

  10. Xu J, Lv W, Yang W, Jin Y, Jin Q, Sun B et al (2022) In situ construction of protective films on Zn metal anodes via natural protein additives enabling high-performance zinc ion batteries. ACS Nano 16(7):11392–11404. https://doi.org/10.1021/acsnano.2c05285

    Article  CAS  PubMed  Google Scholar 

  11. Feng X, Li P, Yin J, Gan Z, Gao Y, Li M et al (2023) Enabling highly reversible Zn anode by multifunctional synergistic effects of hybrid solute additives. ACS Energy Lett 8(2):1192–1200. https://doi.org/10.1021/acsenergylett.2c02455

    Article  CAS  Google Scholar 

  12. Yi Z, Chen G, Hou F, Wang L, Liang J (2020) Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater 11(1):2003065. https://doi.org/10.1002/aenm.202003065

    Article  CAS  Google Scholar 

  13. Kang L, Cui M, Jiang F, Gao Y, Luo H, Liu J et al (2018) Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv Energy Mater 8(25):1801090. https://doi.org/10.1002/aenm.201801090

    Article  CAS  Google Scholar 

  14. Yan H, Li S, Nan Y, Yang S, Li B (2021) Ultrafast zinc-ion-conductor interface toward high-rate and stable zinc metal batteries. Adv Energy Mater 11(46):2100186. https://doi.org/10.1002/aenm.202100186

    Article  CAS  Google Scholar 

  15. Yang X, Li C, Sun Z, Yang S, Shi Z, Huang R et al (2021) Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv Mater 33(52):e2105951. https://doi.org/10.1002/adma.202105951

    Article  CAS  PubMed  Google Scholar 

  16. Yan Y, Shu C, Zeng T, Wen X, Liu S, Deng D et al (2022) Surface-preferred crystal plane growth enabled by underpotential deposited monolayer toward dendrite-free zinc anode. ACS Nano 16(6):9150–9162. https://doi.org/10.1021/acsnano.2c01380

    Article  CAS  PubMed  Google Scholar 

  17. Fang Y, Lei P, Xing H, Xu K, Zhu M, Fan Z et al (2022) One-step targeted treatment for Zn flatting and protection. Energy Storage Mater 53:13–21. https://doi.org/10.1016/j.ensm.2022.08.045

    Article  Google Scholar 

  18. Zhang H, Li S, Xu L, Momen R, Deng W, Hu J et al (2022) High-yield carbon dots interlayer for ultra-stable zinc batteries. Adv Energy Mater 12(26):2200665. https://doi.org/10.1002/aenm.202200665

    Article  CAS  Google Scholar 

  19. Zhou Y, Xia J, Di J, Sun Z, Zhao L, Li L et al (2023) Ultrahigh-rate Zn stripping and plating by capacitive charge carriers enrichment boosting Zn-based energy storage. Adv Energy Mater 13(10):2203165. https://doi.org/10.1002/aenm.202203165

    Article  CAS  Google Scholar 

  20. Yan Y, Shu C, Zheng R, Li M, Ran Z, He M et al (2022) Long-cycling lithium-oxygen batteries enabled by tailoring Li nucleation and deposition via lithiophilic oxygen vacancy in Vo-TiO2/Ti3C2T composite anodes. J Energy Chem 65:654–665. https://doi.org/10.1016/j.jechem.2021.07.008

    Article  CAS  Google Scholar 

  21. Yan Y, Shu C, Zheng R, Li M, Ran Z, He M et al (2021) Modulating Sand’s Time by ion-transport-enhancement toward dendrite-free lithium metal anode. Nano Res 15:3150–3160. https://doi.org/10.1007/s12274-021-3872-3

    Article  CAS  Google Scholar 

  22. Cao Q, Gao H, Gao Y, Yang J, Li C, Pu J et al (2021) Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv Funct Mater 31(37):2103922. https://doi.org/10.1002/adfm.202103922

    Article  CAS  Google Scholar 

  23. Wang Z, Huang J, Guo Z, Dong X, Liu Y, Wang Y et al (2019) A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5):1289–1300. https://doi.org/10.1016/j.joule.2019.02.012

    Article  CAS  Google Scholar 

  24. Zeng Y, Zhang X, Qin R, Liu X, Fang P, Zheng D et al (2019) Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv Mater 31(36):1903675. https://doi.org/10.1002/adma.201903675

    Article  CAS  Google Scholar 

  25. Chen K, Li Y, Du Z, Hu S, Huang J, Shi Z et al (2022) CoFe2O4 embedded bacterial cellulose for flexible, biodegradable, and self-powered electromagnetic sensor. Nano Energy 102:107740. https://doi.org/10.1016/j.nanoen.2022.107740

    Article  CAS  Google Scholar 

  26. Gregory DA, Tripathi L, Fricker ATR, Asare E, Orlando I, Raghavendran V et al (2021) Bacterial cellulose: a smart biomaterial with diverse applications. Mater Sci Eng R Rep 145:100623. https://doi.org/10.1016/j.mser.2021.100623

    Article  Google Scholar 

  27. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491. https://doi.org/10.1021/bm0703970

    Article  CAS  PubMed  Google Scholar 

  28. Liu Q, Wang Y, Hong X, Zhou R, Hou Z, Zhang B (2022) Elastomer-alginate interface for high-power and high-energy Zn metal anodes. Adv Energy Mater 12(20):2200318. https://doi.org/10.1002/aenm.202200318

    Article  CAS  Google Scholar 

  29. Song X, Ma X, Li Y, Ding L, Jiang R (2019) Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Appl Surf Sci 487:189–197. https://doi.org/10.1016/j.apsusc.2019.04.277

    Article  CAS  Google Scholar 

  30. Na W, Jun J, Park JW, Lee G, Jang J (2017) Highly porous carbon nanofibers co-doped with fluorine and nitrogen for outstanding supercapacitor performance. J Mater Chem A 5(33):17379–17387. https://doi.org/10.1039/c7ta04406b

    Article  CAS  Google Scholar 

  31. Zhao G, Yu D, Zhang H, Sun F, Li J, Zhu L et al (2020) Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries. Nano Energy 67:104219. https://doi.org/10.1016/j.nanoen.2019.104219

    Article  CAS  Google Scholar 

  32. Chen Z, Wang Q, Zhang X, Lei Y, Hu W, Luo Y et al (2018) N-doped defective carbon with trace Co for efficient rechargeable liquid electrolyte-/all-solid-state Zn-air batteries. Sci Bull 63(9):548–555. https://doi.org/10.1016/j.scib.2018.04.003

    Article  CAS  Google Scholar 

  33. Zhou J, Lian J, Hou L, Zhang J, Gou H, Xia M et al (2015) Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat Commun 6:8503. https://doi.org/10.1038/ncomms9503

    Article  CAS  PubMed  Google Scholar 

  34. Xiao L, Lu H, Fang Y, Sushko ML, Cao Y, Ai X et al (2018) Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv Energy Mater 8(20):1703238. https://doi.org/10.1002/aenm.201703238

    Article  CAS  Google Scholar 

  35. Zeng L, He H, Chen H, Luo D, He J, Zhang C (2022) 3D printing architecting reservoir-integrated anode for dendrite-free, safe, and durable Zn batteries. Adv Energy Mater 12(12):2103708. https://doi.org/10.1002/aenm.202103708

    Article  CAS  Google Scholar 

  36. Wang J, Liu Y, Cai Q, Dong A, Yang D, Zhao D (2022) Hierarchically porous silica membrane as separator for high-performance lithium-ion batteries. Adv Mater 34(3):e2107957. https://doi.org/10.1002/adma.202107957

    Article  CAS  PubMed  Google Scholar 

  37. Zhang G, Zhang X, Liu H, Li J, Chen Y, Duan H (2021) 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv Energy Mater 11(20):2003927. https://doi.org/10.1002/aenm.202003927

    Article  CAS  Google Scholar 

  38. Su J, Yin X, Zhao H, Yang H, Yang D, He L et al (2022) Temperature-dependent nucleation and electrochemical performance of Zn metal anodes. Nano Lett 22(4):1549–1556. https://doi.org/10.1021/acs.nanolett.1c04353

    Article  CAS  PubMed  Google Scholar 

  39. Bie Z, Yang Q, Cai X, Chen Z, Jiao Z, Zhu J et al (2022) One-step construction of a polyporous and zincophilic interface for stable zinc metal anodes. Adv Energy Mater 12(44):2202683. https://doi.org/10.1002/aenm.202202683

    Article  CAS  Google Scholar 

  40. Wan F, Zhang L, Dai X, Wang X, Niu Z, Chen J (2018) Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat Commun 9:1656–1666. https://doi.org/10.1038/s41467-018-04060-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Q, Luan J, Fu L, Wu S, Tang Y, Ji X et al (2019) The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew Chem Int Ed 58(44):15841–15847. https://doi.org/10.1002/anie.201907830

    Article  CAS  Google Scholar 

  42. Yan C, Xu R, Qin JL, Yuan H, Xiao Y, Xu L et al (2019) 4.5 V High-voltage rechargeable batteries enabled by the reduction of polarization on the lithium metal anode. Angew Chem Int Ed 58(43):15235–15238. https://doi.org/10.1002/anie.201908874

    Article  CAS  Google Scholar 

  43. Li S, Hu B, Ding Y, Liang H, Li C, Yu Z et al (2018) Wood-derived ultrathin carbon nanofiber aerogels. Angew Chem Int Ed 57(24):7085–7090. https://doi.org/10.1002/anie.201802753

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. The authors thank Ms. C. Y. Zhong (Hainan Yeguo Foods Co., Ltd) for kindly providing purified bacterial cellulose pellicles and Hubei Zhaoliqiao Tea Factory Co., Ltd for kindly providing the wasted tea leaf.

Funding

National Natural Science Foundation of China (22075269), National Natural Science Foundation of China-China Academy of Engineering Physics “NSAF” Joint Fund (U2230101), National Natural Science Fund for Excellent Young Scientists Fund (Overseas) Program (GG2090007003), Anhui Provincial Major Science and Technology Project (202203a05020048), Anhui Provincial Hundred Talents Program, Hefei Innovative Program for Overseas Excellent Scholars (BJ2090007002), and Joint Research Center for Multi-Energy Complementation and Conversion.

Author information

Authors and Affiliations

Authors

Contributions

J.H. Wang completed the experiments, data collection, figure composition, and manuscript writing. W.X. Dong helped with data analysis and part of experiments. J.W. Chen helped on manuscript polishing and research supervision. L.F. Chen is in charge of funding acquisition, project management, manuscript reviewing, and supervision.

Corresponding authors

Correspondence to Jingwei Chen or Li-Feng Chen.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 678 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JH., Dong, WX., Chen, J. et al. Three-dimensional synergistic ionic-electronic conductor host assisted high-performance Zn metal battery. Ionics 29, 3097–3107 (2023). https://doi.org/10.1007/s11581-023-05054-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05054-3

Keywords

Navigation