Skip to main content

Advertisement

Log in

α/β–Type NaMn0.89Ni0.11O2: as high-performance sodium-ion battery cathode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Sodium-ion batteries (SIBs) are an exciting alternative to commercially dominant lithium-ion batteries for electric vehicles and other applications. However, cathodes of SIBs suffer poor kinetics, low average potential, and poor rate capability due to the large ionic radius of Na+–ions. We report an α- and β-type composite NaMn0.89Ni0.11O2 cathode with excellent electrochemical performance. The designed electrode shows a discharge capacity of 100.1 mAh g−1 with a capacity retention of about 69% and Coulombic efficiency of 98.9% even after 100 cycles at 0.05C. The diffusion coefficient of the electrode material lies in an impressive range of values of 10−06–10−11 cm2 s−1 over the state of charge. The α-phase helps get a higher diffusion coefficient, and the β-phase diminishes Jahn–Teller distortion arising from the Mn3+/4+ oxidation process, exploiting both phases’ compositional and structural tolerance. The β-phase increases cycle life, and the α-phase increases kinetics. Accessing the Ni2+/4+ oxidation process increases the electrodes’ average operating potential. The NaMn0.89Ni0.11O2 // HC full cell gives an average potential of 2.7 V when cycled in the potential range of 1.5–3.2 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper, its supplementary information files.

References

  1. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682. https://doi.org/10.1021/cr500192f

    Article  CAS  PubMed  Google Scholar 

  2. Deng J, Bin LW, Chou SL et al (2017) Sodium-ion batteries: from academic research to practical commercialization. Adv Energy Mater 1701428:1–17. https://doi.org/10.1002/aenm.201701428

  3. Hwang J-Y, Myung S-T, Sun Y-K (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614. https://doi.org/10.1039/C6CS00776G

    Article  CAS  PubMed  Google Scholar 

  4. Jamesh MI, Prakash AS (2018) Advancement of technology towards developing Na-ion batteries. J Power Sources 378:268–300. https://doi.org/10.1016/j.jpowsour.2017.12.053

    Article  CAS  Google Scholar 

  5. Noguchi Y, Kobayashi E, Plashnitsa LS et al (2013) Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds. Electrochim Acta 101:59–65. https://doi.org/10.1016/j.electacta.2012.11.038

    Article  CAS  Google Scholar 

  6. Pan H, Hu Y-S, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338. https://doi.org/10.1039/c3ee40847g

    Article  CAS  Google Scholar 

  7. Palomares V, Serras P, Villaluenga I et al (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884. https://doi.org/10.1039/c2ee02781j

    Article  CAS  Google Scholar 

  8. Janakiraman S, Padmaraj O, Ghosh S, Venimadhav A (2018) A porous poly (vinylidene fluoride-co-hexafluoropropylene) based separator-cum-gel polymer electrolyte for sodium-ion battery. J Electroanal Chem 826:142–149. https://doi.org/10.1016/j.jelechem.2018.08.032

    Article  CAS  Google Scholar 

  9. Bhide A, Hofmann J, Dürr AK et al (2014) Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na(0.7)CoO2. Phys Chem Chem Phys 16:1987–1998. https://doi.org/10.1039/c3cp53077a

    Article  CAS  PubMed  Google Scholar 

  10. Datta MK, Kuruba R, Jampani PH et al (2014) Electrochemical properties of a new nanocrystalline NaMn2O4 cathode for rechargeable sodium ion batteries. Mater Sci Eng B 188:1–7. https://doi.org/10.1016/j.mseb.2014.05.007

    Article  CAS  Google Scholar 

  11. Ding JJ, Zhou YN, Sun Q et al (2013) Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries. Electrochim Acta 87:388–393. https://doi.org/10.1016/j.electacta.2012.09.058

    Article  CAS  Google Scholar 

  12. Ruffo R, Fathi R, Kim DJ et al (2013) Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte. Electrochim Acta 108:575–582. https://doi.org/10.1016/j.electacta.2013.07.009

    Article  CAS  Google Scholar 

  13. Zhu H, Jia Z, Chen Y et al (2013) Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett 13:3093–3100. https://doi.org/10.1021/nl400998t

    Article  CAS  PubMed  Google Scholar 

  14. Komaba S, Yabuuchi N, Nakayama T et al (2012) Study on the reversible electrode reaction of Na 1–x Ni 0.5 Mn 0.5 O 2 for a rechargeable sodium-ion battery. Inorg Chem 51:6211–6220. https://doi.org/10.1021/ic300357d

    Article  CAS  PubMed  Google Scholar 

  15. Valvo M, Lindgren F, Lafont U et al (2014) Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide. J Power Sources 245:967–978. https://doi.org/10.1016/j.jpowsour.2013.06.159

    Article  CAS  Google Scholar 

  16. Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Phys B+C 99:81–85. https://doi.org/10.1016/0378-4363(80)90214-4

    Article  CAS  Google Scholar 

  17. Clément RJ, Bruce PG, Grey CP (2015) Review—Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. J Electrochem Soc 162:A2589–A2604. https://doi.org/10.1149/2.0201514jes

    Article  CAS  Google Scholar 

  18. Nayak D, Sarkar T, Chaudhary NVP et al (2018) Electrochemical properties and first-principle analysisof Na x [M y Mn1−y ]O2 (M = Fe, Ni) cathode. J Solid State Electrochem 22:1079–1089. https://doi.org/10.1007/s10008-017-3850-6

    Article  CAS  Google Scholar 

  19. Singh G, López del Amo JM, Galceran M et al (2015) Structural evolution during sodium deintercalation/intercalation in Na2/3[Fe1/2Mn1/2]O2. J Mater Chem A 3:6954–6961. https://doi.org/10.1039/C4TA06360K

    Article  CAS  Google Scholar 

  20. Li X, Ma X, Su D et al (2014) Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2. Nat Mater 13:586–592. https://doi.org/10.1038/nmat3964

    Article  CAS  PubMed  Google Scholar 

  21. Nayak D, Dora JK, Agrawal A et al (2022) Biphasic α/β-Type NaMn 0.89 Fe 0.11 O 2 as a cathode for sodium-ion batteries: structural insight and high-performance relation. ACS Appl Energy Mater 5:116–125. https://doi.org/10.1021/acsaem.1c02576

    Article  CAS  Google Scholar 

  22. Nayak D, Jha PK, Ghosh S, Adyam V (2019) Aluminium substituted β–type NaMn1-Al O2: a stable and enhanced electrochemical kinetic sodium-ion battery cathode. J Power Sources 438:227025. https://doi.org/10.1016/j.jpowsour.2019.227025

    Article  CAS  Google Scholar 

  23. Nayak D, Dora JK, Ghosh S, Adyam V (2022) Superior diffusion kinetics and electrochemical properties of α/β–type NaMn0.89Co0.11O2 as cathode for sodium-ion batteries. J Solid State Electrochem 26:1231–1239. https://doi.org/10.1007/s10008-022-05157-3

    Article  CAS  Google Scholar 

  24. Qi X, Liu L, Song N et al (2017) Design and comparative study of O3/P2 hybrid structures for room temperature sodium-ion batteries. ACS Appl Mater Interfaces 9:40215–40223. https://doi.org/10.1021/acsami.7b11282

    Article  CAS  PubMed  Google Scholar 

  25. Wu ZG, Li JT, Zhong YJ et al (2017) Mn-based cathode with synergetic layered-tunnel hybrid structures and their enhanced electrochemical performance in sodium-ion batteries. ACS Appl Mater Interfaces 9:21267–21275. https://doi.org/10.1021/acsami.7b04338

    Article  CAS  PubMed  Google Scholar 

  26. Hakim C, Sabi N, Saadoune I (2021) Mixed structures as a new strategy to develop outstanding oxides-based cathode materials for sodium ion batteries: a review. J Energy Chem 61:47–60. https://doi.org/10.1016/j.jechem.2021.02.027

    Article  CAS  Google Scholar 

  27. Lee E, Lu J, Ren Y, et al (2014) Layered P2/O3 intergrowth cathode: toward high power Na-ion batteries. Adv Energy Mater 1400458:1–8. https://doi.org/10.1002/aenm.201400458

  28. Parant JP, Olazcuaga R, Devalette M et al (1971) Sur quelques nouvelles phases de formule NaxMnO2(x ≤ 1). J Solid State Chem. https://doi.org/10.1016/0022-4596(71)90001-6

    Article  Google Scholar 

  29. Ma X, Chen H, Ceder G (2011) Electrochemical properties of monoclinic NaMnO2. J Electrochem Soc 158:A1307. https://doi.org/10.1149/2.035112jes

    Article  CAS  Google Scholar 

  30. Zhang R, Lu Z, Yang Y, Shi W (2018) First-principles investigation of the monoclinic NaMnO 2 cathode material for rechargeable Na-ion batteries. Curr Appl Phys 18:1431–1435. https://doi.org/10.1016/j.cap.2018.08.011

    Article  Google Scholar 

  31. Billaud J, Clément RJ, Armstrong AR et al (2014) β-NaMnO2: a high-performance cathode for sodium-ion batteries. J Am Chem Soc 136:17243–17248. https://doi.org/10.1021/ja509704t

    Article  CAS  PubMed  Google Scholar 

  32. Orlandi F, Aza E, Bakaimi I et al (2018) Incommensurate atomic and magnetic modulations in the spin-frustrated triangular lattice. Phys Rev Mater 2:074407. https://doi.org/10.1103/PhysRevMaterials.2.074407

    Article  CAS  Google Scholar 

  33. Clément RJ, Middlemiss DS, Seymour ID et al (2016) Insights into the nature and evolution upon electrochemical cycling of planar defects in the β-NaMnO 2 Na-ion battery cathode: an NMR and first-principles density functional theory approach. Chem Mater 28:8228–8239. https://doi.org/10.1021/acs.chemmater.6b03074

    Article  CAS  Google Scholar 

  34. Li X, Wang Q, Guo H et al (2022) Understanding the onset of surface degradation in LiNiO 2 cathodes. ACS Appl Energy Mater 5:5730–5741. https://doi.org/10.1021/acsaem.2c00012

    Article  CAS  Google Scholar 

  35. Jang SH, Lee KJ, Mun J et al (2019) Chemically-induced cathode–electrolyte interphase created by lithium salt coating on nickel-rich layered oxides cathode. J Power Sources 410–411:15–24. https://doi.org/10.1016/j.jpowsour.2018.11.008

    Article  CAS  Google Scholar 

  36. Weppner W, Huggins RA (1977) Determination of the kinetic parameters of mixed-conducting electrodes and application to the system LLSb. J Electrochem Soc 124:1569–1578

    Article  CAS  Google Scholar 

  37. Wang P, Yao H, Liu X et al (2018) Na + /vacancy disordering promises high-rate Na-ion batteries. Sci Adv 4:1–10. https://doi.org/10.1126/sciadv.aar6018

    Article  CAS  Google Scholar 

  38. Wang P-F, You Y, Yin Y-X, Guo Y-G (2016) An O3-type NaNi 0.5 Mn 0.5 O 2 cathode for sodium-ion batteries with improved rate performance and cycling stability. J Mater Chem A 4:17660–17664. https://doi.org/10.1039/C6TA07589D

    Article  CAS  Google Scholar 

  39. Rahn CD, Wang CY (2013) Battery systems engineering. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118517048

  40. Kang H, Liu Y, Cao K et al (2015) Update on anode materials for Na-ion batteries. J Mater Chem A 3:17899–17913. https://doi.org/10.1039/C5TA03181H

    Article  CAS  Google Scholar 

  41. Wang LP, Yu L, Wang X et al (2015) Recent developments in electrode materials for sodium-ion batteries. J Mater Chem A 3:9353–9378. https://doi.org/10.1039/C4TA06467D

    Article  CAS  Google Scholar 

  42. Dora JK, Nayak D, Ghosh S et al (2020) A facile and green synthesis approach to derive highly stable SiO x -hard carbon based nanocomposites for use as the anode in lithium-ion batteries. Sustain Energy Fuels 4:6054–6065. https://doi.org/10.1039/D0SE01083A

    Article  CAS  Google Scholar 

  43. Nayak D, Ghosh S, Adyam V (2018) Thin film manganese oxide polymorphs as anode for sodium-ion batteries: an electrochemical and DFT based study. Mater Chem Phys 217:82–89. https://doi.org/10.1016/j.matchemphys.2018.06.065

    Article  CAS  Google Scholar 

  44. Agrawal A, Biswas K, Srivastava SK, Ghosh S (2018) Effect of N-doping on hard carbon nano-balls as anode for Li-ion battery: improved hydrothermal synthesis and volume expansion study. J Solid State Electrochem 22: 3443–3455 https://doi.org/10.1007/s10008-018-4044-6

  45. Agrawal A, Janakiraman S, Biswas K et al (2019) Electrochimica Acta Understanding the improved electrochemical performance of nitrogen-doped hard carbons as an anode for sodium ion battery. Electrochim Acta 317:164–172. https://doi.org/10.1016/j.electacta.2019.05.158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge that the financial support for this work came from the Ministry of Human Resource Development (MHRD), Government of India, through the initiative of IMPACTING RESEARCH INNOVATION AND TECHNOLOGY (IMPRINT), grant number 7911.

Funding

The financial support for this work came from the Ministry of Human Resource Development (MHRD), Government of India, through the initiative of IMPACTING RESEARCH INNOVATION AND TECHNOLOGY (IMPRINT), grant number 7911.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Nayak.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 869 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, D., Dora, J.K., Ghosh, S. et al. α/β–Type NaMn0.89Ni0.11O2: as high-performance sodium-ion battery cathode. Ionics 29, 2715–2722 (2023). https://doi.org/10.1007/s11581-023-05053-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05053-4

Keywords

Navigation