Skip to main content

Advertisement

Log in

Fast Li-ion conductor additive toward high-rate lithium storage capacity for Li2ZnTi3O8 in lithium-ion batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A novel strategy to improve the ionic conductivity of the Li2ZnTi3O8 (LZTO) anode is proposed by embedding exfoliation and exchange of Li+ montmorillonite (MMT) in LZTO particles. Li2ZnTi3O8 and montmorillonite (LZTO-MMT) composites are shown to induce not only a high concentration of Li+ in the interlamellar channel of MMT but also a reduction in the distance for Li+ migration to ensure fast and stable Li+ diffusion kinetics. Furthermore, the thus obtained LZTO and 6 wt% MMT (LZTO-6MMT), composed of fast Li+ conductor MMT, exhibits increased Li+ conductivities, excellent high-rate Li+ storage capacities, and significant improvement in cycle reversibility. The LZTO-6MMT electrode delivers 219.6 mAh g−1 at a current density of 1.0 A g−1 after 500 cycles and shows an excellent high-rate performance of 127.8 and 112.0 mAh g−1 over 2000 cycles at 5.0 and 10.0 A g−1, respectively. X-ray photoelectron spectroscopy and ex situ Raman spectrum analyses suggest that the chemical bonds and crystal structure remain stable after multiple Li+ intercalation/deintercalation processes. To the best of our knowledge, this is the first report on the introduction of fast-ion conductor MMT into LZTO and its application to lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  PubMed  Google Scholar 

  2. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  PubMed  Google Scholar 

  3. Chu S, Cui Y, Liu N (2017) The path towards sustainable energy. Nature Mater 16:16–22

    Article  Google Scholar 

  4. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  CAS  PubMed  Google Scholar 

  5. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  PubMed  Google Scholar 

  6. Altinci OC, Demir M (2020) Beyond conventional activating methods, a green approach for the synthesis of bio-carbon and its supercapacitor electrode performance. Energy Fuels 34:7658–7665

    Article  CAS  Google Scholar 

  7. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302

    Article  CAS  PubMed  Google Scholar 

  8. Bai ZC, Zhang YW, Zhang YH, Guo CL, Tang B (2015) A large-scale, green route to synthesize of leaf-like mesoporous CuO as high-performance anode materials for lithium ion batteries. Electrochim Acta 159:29–34

    Article  CAS  Google Scholar 

  9. Huang XH, Xia XH, Yuan YF, Zhou F (2011) Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim Acta 56:4960–4965

    Article  CAS  Google Scholar 

  10. Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ (2013) Metallic anodes for next generation secondary batteries. Chem Soc Rev 42:9011–9034

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Yang YA, Zhou Z (2020) Towards practical lithium-metal anodes. Chem Soc Rev 49:3040–3071

    Article  CAS  PubMed  Google Scholar 

  12. Xiao LF, Yang YY, Yin J, Li Q, Zhang LZ (2009) Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. J Power Sources 194:1089–1093

    Article  CAS  Google Scholar 

  13. Chen XQ, Zhang YM, Lin HB, Xia P, Cai X, Li XG, Li XQ, Li WS (2016) Porous ZnMn2O4 nanospheres: facile synthesis through microemulsion method and excellent performance as anode of lithium ion battery. J Power Sources 312:137–145

    Article  CAS  Google Scholar 

  14. Li C, Bai H, Shi GQ (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397–2409

    Article  CAS  PubMed  Google Scholar 

  15. Sivakkumar SR, Kim DW (2007) Polyaniline/carbon nanotube composite cathode for rechargeable lithium polymer batteries assembled with gel polymer electrolyte. J Electrochem Soc 154:A134–A139

    Article  CAS  Google Scholar 

  16. Zhao BT, Deng X, Ran R, Liu ML, Shao ZP (2016) Facile synthesis of a 3D nanoarchitectured Li4Ti5O12 electrode for ultrafast energy storage. Adv Energy Mater 6:1500924

    Article  Google Scholar 

  17. Firdous N, Arshad N, Simonsen SB, Kadirvelayutham P, Norby P (2020) Advanced electrochemical investigations of niobium modified Li2ZnTi3O8 lithium ion battery anode materials. J Power Sources 462:228186

    Article  CAS  Google Scholar 

  18. Wang L, Xiao QZ, Li ZH, Lei GT, Wu LJ, Zhang P, Mao J (2012) Synthesis of Li2CoTi3O8 fibers and their application to lithium-ion batteries. Electrochim Acta 77:77–82

    Article  CAS  Google Scholar 

  19. Fan SS, Yu HT, Xie Y, Yi TF, Tian GH (2018) Morphology control and its effect on the electrochemical performance of Na2Li2Ti6O14 anode materials for lithium ion battery application. Electrochim Acta 259:855–864

    Article  CAS  Google Scholar 

  20. Park H, Wu HB, Song T, XW (David) Lou, Paik U (2015) Porosity-controlled TiNb2O7 microspheres with partial nitridation as a practical negative electrode for high power lithium-ion batteries. Adv Energy Mater 5:1401945

  21. Lamberti A, Garino N, Sacco A, Bianco S, Manfredi D, Gerbaldi C (2013) Vertically aligned TiO2 nanotube array for high rate Li-based micro-battery anodes with improved durability. Electrochim Acta 102:233–239

    Article  CAS  Google Scholar 

  22. Chen ZH, Belharouak I, Sun Y-K, Amine K (2013) Titanium-based anode materials for safe lithium-ion batteries. Adv Funct Mater 23:959–969

    Article  CAS  Google Scholar 

  23. Zhang WX, Li M, Wang Q, Chen GD, Kong M, Yang ZH, Mann S (2011) Adv Funct Mater 21:3516–3523

    Article  CAS  Google Scholar 

  24. Zhao YM, Ren LX, Wang AX, Luo JY (2021) Composite anodes for lithium metal batteries. Acta Phys -Chim Sin 37(2):2008090

  25. Hong Z, Wei M, Ding X, Jiang L, Wei K (2010) Li2ZnTi3O8 nanorods: a new anode material for lithium-ion battery. Electrochem Commun 12(6):720–723

    Article  CAS  Google Scholar 

  26. Hong ZS, Zheng XZ, Ding XK, Jiang LL, Wei MD, Wei KM (2011) Complex spinel titanate nanowires for a high rate lithium-ion battery. Energy Environ Sci 4:1886–1891

    Article  CAS  Google Scholar 

  27. Chen W, Zhou ZR, Wang RR, Wu ZT, Liang HF, Shao LY, Shu J, Wang ZC (2015) High performance Na-doped lithium zinc titanate as anode material for Li-ion batteries. RSC Adv 5:49890–49898

    Article  CAS  Google Scholar 

  28. Li Y, Yi TF, Li XZ, Lai XQ, Pan JJ, Cui P, Zhu YR, Xie Y (2021) Li2ZnTi3O8@α-Fe2O3 composite anode material for Li-ion batteries. Ceram Int 47:18732–18742

    Article  CAS  Google Scholar 

  29. Yan HB, Li SM, Nan Y, Yang SB, Li B (2021) Ultrafast zinc-ion-conductor interface toward high-rate and stable zinc metal batteries. Adv Energy Mater 11:2100186

    Article  CAS  Google Scholar 

  30. Maiti S, Pramanik A, Chattopadhyay S, De G, Mahanty S (2016) Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte. J Colloid Interf Sci 464:73–82

    Article  CAS  Google Scholar 

  31. Ramadan AR, Esawi AMK, Gawad AA (2010) Effect of ball milling on the structure of Na+-montmorillonite and organo-montmorillonite (Cloisite 30B). Appl Clay Sci 47:196–202

    Article  CAS  Google Scholar 

  32. Tang HQ, Song YM, Zan LX, Yue YZ, Dou D, Song YK, Wang M, Liu XT, Liu T, Tang ZY (2021) Characterization of lithium zinc titanate doped with metal ions as anode materials for lithium ion batteries. Dalton Trans 50:3356–3368

    Article  CAS  PubMed  Google Scholar 

  33. Xu YX, Hong ZS, Xia LC, Yang J, Wei MD (2013) One step sol-gel synthesis of Li2ZnTi3O8/C nanocomposite with enhanced lithium-ion storage properties. Electrochim Acta 88:74–78

    Article  CAS  Google Scholar 

  34. An CY, Li CH, Tang HQ, Liu T, Tang ZY (2020) Binder-free flexible Li2ZnTi3O8@MWCNTs stereoscopic network as lightweight and superior rate performance anode for lithium-ion batteries. J Alloys Compd 816:152580

    Article  CAS  Google Scholar 

  35. Etacheri V, Seisenbaeva GA, Caruthers J, Daniel G, Nedelec J-M, Kessler VG, Pol VG (2015) Ordered network of interconnected SnO2 nanoparticles for excellent lithium-ion storage. Adv Energy Mater 5:1401289

    Article  Google Scholar 

  36. Yu J, Peng JX, Huang WL, Wang LJ, Wei YB, Yang NX, Li LB (2021) Inhibition of excessive SEI-forming and improvement of structure stability for LiNi0.8Co0.1Mn0.1O2 by Li2MoO4 coating. Ionics 27:2867–287

  37. Borghols WJH, Wagemaker M, Lafont U, Kelde EM, Mulder FM (2009) Size effects in the Li4+xTi5O12 spinel. J Am Chem Soc 131:17786–17792

    Article  CAS  PubMed  Google Scholar 

  38. Ge H, Li N, Li D, Dai C, Wang D (2008) Electrochemical characteristics of spinel Li4Ti5O12 discharged to 0.01 V. Electrochem Commun 10:719–722

  39. Peng JX, Zhong KN, Huang WL, Hou XY, Gao HQ, Fang Z, Li LB (2021) Regulation of an Inner Helmholtz Plane by hierarchical porous biomass activated carbon for stable cathode electrolyte interphase films. Vacuum 191:110331

    Article  CAS  Google Scholar 

  40. Peng JX, Yu J, Chu DW, Hou XY, Jia XF, Meng BC, Yang K, Zhao JK, Yang NX, Wu JC, Li LB (2022) Synergistic effects of an artificial carbon coating layer and Cu2+-electrolyte additive for high-performance zinc-based hybrid supercapacitors. Carbon 198:34–45

    Article  CAS  Google Scholar 

  41. Huang YY, Li X, Luo JH, Wang K, Zhang Q, Qiu YG, Sun SX, Liu ST, Han JT, Huang YH (2017) Enhancing sodium-ion storage behaviors in TiNb2O7 by mechanical ball milling. ACS Appl Mater Interfaces 9:8696–8703

    Article  CAS  PubMed  Google Scholar 

  42. Jeong YK, Kwon T-W, Lee I, Kim T-S, Coskun A, Choi JW (2014) Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett 14:864–870

    Article  CAS  PubMed  Google Scholar 

  43. Aldon L, Kubiak P, Womes M, Jumas J, Olivier-Fourcade J, Tirado J, Corredor J, Vicente CP (2004) Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel. Chem Mater 16:5721–5725

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 51702081), special project for the cultivation of scientific and technological innovation ability of college and middle school students in Hebei Province (22E50121D and 22E50300D), and college students’ innovation and entrepreneurship training program in Hebei Province (S202210076026).

Author information

Authors and Affiliations

Authors

Contributions

Haoqing Tang conceived and designed the study. Siying Zhao, Xiaotong Liu, and Tao Liu performed the experiments. Qiang Weng provided the physical characterization results. Haoqing Tang and Xiaotong Liu wrote the paper. Haoqing Tang and Zhiyuan Tang reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Haoqing Tang, Qiang Weng or Xiaotong Liu.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 452 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Zhao, S., Weng, Q. et al. Fast Li-ion conductor additive toward high-rate lithium storage capacity for Li2ZnTi3O8 in lithium-ion batteries. Ionics 29, 3001–3012 (2023). https://doi.org/10.1007/s11581-023-05050-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05050-7

Keywords

Navigation