Skip to main content
Log in

Grain radial growth of LiNi0.5Mn1.5O4 cathode material for high-performance lithium-ion transport

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In order to improve the diffusion kinetics of lithium ions in polycrystalline LNMO cathode materials, LNMO cathode materials with grain radial growth microstructure were prepared by high-temperature solid-phase method after adjusting the microstructure of MnCO3 precursor, and the effect of this unique microstructure on the electrochemical performance was studied. The excellent rate performance of R-LNMO electrode proves that the microstructure of grain radial growth provides a rapid diffusion path for Li+ from the inside to the surface of the particle, which is conducive to efficient transmission. In addition, the directional arrangement of grains helps the electrolyte to enter and reduce the polarization effect, thus endowing LNMO with excellent rate performance. Compared with the traditional polycrystalline LNMO, the R-LNMO electrode can still provide a high specific discharge capacity of 101.5 mAh g−1 at a high current density of 10 C, and the retention rate of 10 C/0.2 C is 86.9%. Even after 1000 cycles at 10 C high current, the capacity retention rate can reach 77.2%, which shows excellent cycle stability. This strategy of controlling precursor structure provides a new idea for the fast charging and discharging of polycrystalline cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The findings of this study are supported by data which can be made available by the corresponding author upon a reasonable institutional request.

References

  1. Liu HD, Wang J, Zhang XF, Zhou D, Li J (2016) Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size. ACS Appl Mater Interfaces 8:4661–4675

    CAS  PubMed  Google Scholar 

  2. Hou XY, Ruan M, Zhou LJ, Wu JC, Meng BC, Huang WL, Zhong KA, Yang K, Fang Z, Xie KY (2023) Superior lithium storage performance in MoO3 by synergistic effects: oxygen vacancies and nanostructures. J Energy Chem 78:91–101

    CAS  Google Scholar 

  3. Li Q, Wang Y, Wang X, Sun X, Li H (2020) Investigations on the fundamental process of cathode electrolyte interphase formation and evolution of high-voltage cathodes. ACS Appl Mater Interfaces 12:2319–2326

    CAS  PubMed  Google Scholar 

  4. Roberts AD, Li X, Zhang H (2014) Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev 43:4341–4356

    CAS  PubMed  Google Scholar 

  5. Huang YM, Dong YH, Li S, Lee J, Wang C, Zhu Z, Xue WJ, Li Y, Li J (2021) Lithium manganese spinel cathodes for lithium-ion batteries. Adv Energy Mater 11:2000997

    CAS  Google Scholar 

  6. Mou J, Deng Y, He L, Zheng Q, Jiang N, Lin D (2017) Critical roles of semi-conductive LaFeO3 coating in enhancing cycling stability and rate capability of 5 V LiNi0.5Mn1.5O4 cathode materials. Electrochim Acta 260:101–111

    Google Scholar 

  7. Spence SL, Hu A, Jiang M, Xu Z, Yang Z, Rahman MM, Li L, Chu YS, Xiao X, Huang X, Lin F (2022) Mapping lattice distortions in LiNi0.5Mn1.5O4 cathode materials. ACS Energy Lett 7:690–695

    CAS  Google Scholar 

  8. Trevisanello E, Ruess R, Conforto G, Richter FH, Janek J (2021) Polycrystalline and single crystalline NCM cathode materials-quantifying particle cracking, active surface area, and lithium diffusion. Adv Energy Mater 11:2003400

    CAS  Google Scholar 

  9. Zhou GM, Xu LX, Hu GW, Mai LQ, Cui Y (2019) Nanowires for electrochemical energy storage. Chem Rev 119:11042–11109

    CAS  PubMed  Google Scholar 

  10. Li S, Ma G, Guo B, Yang ZH, Fan XM, Chen ZX, Zhang WX (2016) Kinetically controlled synthesis of LiNi0.5Mn1.5O4 micro- and nanostructured hollow spheresas high-rate cathode materials for lithium ion batteries. Ind Eng Chem Res 55:9352–9361

    CAS  Google Scholar 

  11. Huang WY, Li XY, Zhao WG, Zhu C, Ren HY, Chen HB, Pan F, Zhang MJ (2022) Tuning core-shell structural architecture for high-performance Li-Mn-O layered oxides. Nano Energy 96:107092

    CAS  Google Scholar 

  12. Li L, Zhao R, Pan D, Yi SH, Gao LF, He GJ, Zhao HL, Yu CY, Bai Y (2020) Constructing tri-functional modification for spinel LiNi0.5Mn1.5O4 via fast ion conductor. J Power Sources 450:227677

    CAS  Google Scholar 

  13. Amin R, Belharouk I (2017) Part I: electronic and ionic transport properties of the ordered and disordered LiNi0.5Mn1.5O4 spinel cathode. J Power Sources 348:311–317

    CAS  Google Scholar 

  14. Hx D, Koenig GM (2020) A review on synthesis and engineering of crystal precursors produced via coprecipitation for multicomponent lithium-ion battery cathode materials. CrystEngComm 22:1514–1530

    Google Scholar 

  15. Park GT, Park NY, Noh TC, Namkoong B, Ryu HH, Shin JY, Beierling T, Yoon CS, Sun YK (2021) High-performance Ni-rich Li[Ni0.9-xCo0.1Alx]O2 cathodes via multi-stage microstructural tailoring from hydroxide precursor to the lithiated oxide. Energy Environ Sci 14:5084–5095

    CAS  Google Scholar 

  16. Qiu L, Zhang MK, Ming Y, Song Y, Xu CL, Wu ZG, Xu Q, Chen TR, Wang GK, Liu YX, He FR, Zhang J, Yan H, Zhang B, Xiang W, Guo XD, Yang EQ (2021) Exposing microstructure evolution of Ni-rich Ni-Co-Al hydroxide precursor. Chem Eng Sci 233:116337

    CAS  Google Scholar 

  17. Yang CK, Qi LY, Zuo Z, Wang RN, Ye M, Lu J, Zhou HH (2016) Insights into the inner structure of high-nickel agglomerate as high-performance lithium-ion cathodes. J Power Sources 331:487–494

    CAS  Google Scholar 

  18. Chen J, Huang Z, Zeng W, Cao F, Ma J, Tian W, Mu S (2021) Synthesis, modification, and lithium-storage properties of spinel LiNi0.5Mn1.5O4. ChemElectroChem 8:608–624

    CAS  Google Scholar 

  19. Yang Y, Xu SM, Xie M, He YH, Huang GY, Yang YC (2015) Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: a case of Ni1/3Co1/3Mn1/3(OH)2. J Alloys Compd 619:846–853

    CAS  Google Scholar 

  20. Chen WC, Song YF, Wang CC, Liu YJ, Morris DT, Pianetta PA, Andrews JC, Wu HC, Wu NL (2013) Study on the synthesis-microstructure-performance relationship of layered Li-excess nickel-manganese oxide as a Li-ion battery cathode prepared by high-temperature calcination. J Mater Chem A 1:10847–10856

    CAS  Google Scholar 

  21. Tang K, Wang Y, Zhang X, Jamil S, Huang Y, Cao S, Xie X, Bai Y, Wang X, Luo Z, Chen G (2019) High-performance P2-type Fe/Mn-based oxide cathode materials for sodium-ion batteries. Electrochim Acta 312:45–53

    CAS  Google Scholar 

  22. Xue Y, Wang ZB, Zheng LL, Yu FD, Liu BS, Zhou YX (2017) Investigation on spinel LiNi0.5Mn1.5O4 synthesized by MnCO3 prepared under different conditions for lithium-ion batteries. ChemistrySelect 2:4325–4331

    CAS  Google Scholar 

  23. Shen YB, Wu YQ, Xue HJ, Wang SH, Yin DM, Wang LM, Cheng Y (2021) Insight into the coprecipitation-controlled crystallization reaction for preparing lithium-layered oxide cathodes. ACS Appl Mater Interfaces 13:717–726

    CAS  PubMed  Google Scholar 

  24. Lai WH, Wang YX, Wang Y, Wu MH, Wang JZ, Liu HK, Chou SL, Chen J, Dou SX (2019) Morphology tuning of inorganic nanomaterials grown by precipitation through control of electrolytic dissociation and supersaturation. Nature Chem 11:695–701

    CAS  Google Scholar 

  25. Kunduraci M, Amatucci GG (2006) Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J Electrochem Soc 153:A1345–A1352

    CAS  Google Scholar 

  26. Wang L, Hong L, Huang X, Baudrin E (2011) A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4”. Solid State Ion 193:32–38

    CAS  Google Scholar 

  27. Tang ZK, Xue YF, Teobaldi G, Liu LM (2020) The oxygen vacancy in Li-ion battery cathode materials. Nanoscale Horiz 5:1453–1466

    PubMed  Google Scholar 

  28. Xu ZR, Jiang ZS, Kuai CG, Xu R, Qin CD, Zhang Y, Rahman MM, Wei CX, Nordlund D, Sun CJ, Xiao XH, Du XW, Zhao KJ, Yan PF, Liu YJ, Lin F (2020) Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials. Nat Commun 11:83

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Park NY, Ryu HH, Park GT, Noh TC, Sun YK (2021) Optimized Ni-rich NCMA cathode for electric vehicle batteries. Adv Energy Mater 11:2003767

    CAS  Google Scholar 

  30. Kim UH, Kim JH, Hwang Y, Ryu HH, Yoon CS, Sun YK (2019) Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries. Mater Today 23:26–36

    CAS  Google Scholar 

  31. Kim UH, Park GT, Son BK, Nam GW, Liu J, Kuo LY, Kaghazchi P, Yoon CS, Sun YK (2020) Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nature Energy 5:860–869

    CAS  Google Scholar 

  32. Pieczonka NPW, Liu Z, Lu P, Olson KL, Moote J, Powell BR, Kim J-H (2013) Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J Phys Chem C 117:15947–15957

    CAS  Google Scholar 

  33. Xiao J, Chen XL, Sushko PV, Sushko ML, Kovarik L, Feng JJ, Deng ZQ, Zheng JM, Graff GL, Nie ZM, Choi DW, Liu J, Zhang JG, Whittingham MS (2012) High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv Mater 24:2109–2116

    CAS  PubMed  Google Scholar 

  34. Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK (2004) Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332. Chem Mater 16:906–914

    CAS  Google Scholar 

  35. Qian YX, Deng YF, Wan LN, Xu HJ, Qin XS, Chen GH (2014) Investigation of the effect of extra lithium addition and postannealing on the electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. J Phys Chem C 118:15581–15589

    CAS  Google Scholar 

  36. Park KJ, Jung HG, Kuo LY, Kaghazchi P, Yoon CS, Sun YK (2018) Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-ion batteries. Adv Energy Mater 8:1801202

    Google Scholar 

  37. Huang WL, Meng BC, Li J, Yang K, Fang Z (2022) Spent carbon cathode used as a cathode material for high-performance dual-ion batteries: high-value utilization. ACS Appl Energy Mater 5:14487–14495

    CAS  Google Scholar 

  38. Xu X, Huo H, Jian JY, Wang LG, Zhu H, Xu S, He XS, Yin GP, Du CY, Sun XL (2019) Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Adv Energy Mater 9:1803963

    Google Scholar 

  39. Lahiru Sandaruwan RD, Cong L, Ma L, Ma S, Wang H (2021) Tackling the interfacial issues of spinel LiNi0.5Mn1.5O4 by room-temperature spontaneous dediazonation reaction. ACS Appl Mater Interfaces 13:13264–13272

    CAS  PubMed  Google Scholar 

  40. Xu T, Li Y, Wang D, Wu M, Pan D, Zhao H, Bai Y (2018) Enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode material by YPO4 surface modification. Acs Sustain Chem Eng 6:5818–5825

    CAS  Google Scholar 

  41. Lee B, Krajewski M, Huang M, Hasin P, Lin J (2021) Spinel LiNi0.5Mn1.5O4 with ultra-thin Al2O3 coating for Li-ion batteries: investigation of improved cycling performance at elevated temperature. J Solid State Electrochem 25:2665–2674

    CAS  Google Scholar 

  42. Ma C, Wen Y, Qiao Q, He P, Ren S, Li M, Zhao P, Qiu J, Tang G (2021) Improving electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathodes by silicon oxide surface modification. ACS Appl Energy Mater 4:12201–12210

    CAS  Google Scholar 

  43. Gong XH, Zheng YB, Zheng J, Cao SP, Wen H, Lin BP, Sun YM (2020) Surface-functionalized graphite as long cycle life anode materials for lithium-ion batteries. ChemElectroChem 7:1465–1472

    CAS  Google Scholar 

  44. Kim HR, Choi WM (2018) Graphene modified copper current collector for enhanced electrochemical performance of Li-ion battery. Scr Mater 146:100–104

    CAS  Google Scholar 

  45. Wei L, Tao J, Yang Y, Fan X, Ran X, Li J, Lin Y, Huang Z (2020) Surface sulfidization of spinel LiNi0.5Mn1.5O4 cathode material for enhanced electrochemical performance in lithium-ion batteries. Chem Eng J 384:123268

    CAS  Google Scholar 

  46. Huang WL, Peng JX, Li J, Hou XY, Zhang XL, Fang Z (2022) Diffusion coefficient analysis of aluminum electrolysis spent cathode as anode material for lithium-ion battery. Ionics 28:961–971

    CAS  Google Scholar 

  47. Tang K, Yu XQ, Sun JP, Li H, Huang XJ (2011) Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta 56:4869–4875

    CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (52274353, 51974219, and 52034011). The authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for the XRD and SEM analysis.

Author information

Authors and Affiliations

Authors

Contributions

Wenlong Huang designed the research. Wenlong Huang, Xingliang Zhang, and Lele Zhang fabricated the devices and performed the electrochemical performance test. Lele Zhang and Bicheng Meng contributed to the sample fabrication and processing. Xueyang Hou contributed to the sample structure detection. Wenlong Huang, Kai Yang, and Zhao Fang analyzed the data and wrote the paper. All authors participated in the discussions.

Corresponding author

Correspondence to Zhao Fang.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Zhang, X., Zhang, L. et al. Grain radial growth of LiNi0.5Mn1.5O4 cathode material for high-performance lithium-ion transport. Ionics 29, 3055–3065 (2023). https://doi.org/10.1007/s11581-023-05041-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05041-8

Keywords

Navigation