Skip to main content

Advertisement

Log in

Mixed Ni-Co selenides as advanced electrode materials for high-performance supercapacitor

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, Ni-Co selenides (Ni-Co-Se) with both hollow nanospheres and nanoparticles surrounded by thin nanosheets are fabricated. The obtained selenides are investigated as electrode materials of supercapacitor and show enhanced performance. Under optimized conditions, the specific capacitance can reach 1494.9/1192.4 F g−1 at 1/20 A g−1, which shows a desirable rate performance with retention up to 79.8%. In addition, the initial capacitance can remain about 81.5% over 10000 cycles, demonstrating stable cycling performance. For Ni-Co-Se, co-existence of the hollow nanospheres and the nanoparticles surrounded by thin nanosheets can facilitate the exposure of the active site and the transportation of electrolyte and electrons. The hollow nanospheres may not only participate in the reaction together with the nanoparticles but also play the role of reservoir to compensate the capacitance decay timely. Therefore, the desirable electrochemical performance is ascribed to the unique structure and the resulting high conductivity. The above attractive results ensure that the Ni-Co selenides are the hopeful candidates for sustainable energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data and materials will be made available on request.

References

  1. Dai J, Qi X, Xia L, Xue Q, Luo L, Wang X (2022) Aqueous ammonium‐ion supercapacitors with unprecedented energy density and stability enabled by oxygen vacancy‐enriched MoO3@ C. Adv Funct Mater 7(4):2212440

  2. Liu T, Zhang L, You W, Yu J (2018) Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 12:e1702407

    Article  Google Scholar 

  3. Zong W, Guo H, Ouyang Y, Mo L, Zhou C, Chao G (2022) Topochemistry-driven synthesis of transition-metal selenides with weakened van der Waals force to enable 3D-printed Na-Ion hybrid capacitors. Adv Funct Mater 32(13):2110016

    Article  CAS  Google Scholar 

  4. Brunet Cabré M, Spurling D, Martinuz P, Longhi M, Schröder C, Nolan H (2023) Isolation of pseudocapacitive surface processes at monolayer MXene flakes reveals delocalized charging mechanism. Nat Commun 14(1):374

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee D, Mathur S, Kim KH (2021) Bilayered NiZn(CO3)(OH)2-Ni2(CO3)(OH)2 nanocomposites as positive electrode for supercapacitors. Nano Energy 86:106076

    Article  CAS  Google Scholar 

  6. Zhai Z-B, Huang K-J, Wu X (2018) Superior mixed Co-Cd selenide nanorods for high performance alkaline battery-supercapacitor hybrid energy storage. Nano Energy 47:89–95

    Article  CAS  Google Scholar 

  7. Chen D, Zhao Z, Chen G, Li T, Chen J, Ye Z (2023) Metal selenides for energy storage and conversion: a comprehensive review. Coord Chem Rev 479:214984

    Article  CAS  Google Scholar 

  8. Mohammadi Zardkhoshoui A, Ameri B, Hosseiny Davarani SS (2021) A high-energy-density supercapacitor with multi-shelled nickel-manganese selenide hollow spheres as cathode and double-shell nickel-iron selenide hollow spheres as anode electrodes. Nanoscale 13(5):2931–2945

    Article  CAS  PubMed  Google Scholar 

  9. Shinde PA, Chodankar NR, Abdelkareem MA, Patil SJ, Han Y-K, Elsaid K (2022) All transition metal selenide composed high-energy solid-state hybrid supercapacitor. Small 18(20):2200248

    Article  CAS  Google Scholar 

  10. Kirubasankar B, Murugadoss V, Lin J, Ding T, Dong M, Liu H (2018) In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10(43):20414–20425

    Article  CAS  PubMed  Google Scholar 

  11. Younas W, Naveed M, Cao C, Zhu Y, Du C, Ma X (2022) Facile one-step microwave-assisted method to synthesize nickel selenide nanosheets for high-performance hybrid supercapacitor. J Colloid Interface Sci 608:1005–1014

    Article  CAS  PubMed  Google Scholar 

  12. Nagaraju G, Cha SM, Sekhar SC, Yu JS (2017) Metallic layered polyester fabric enabled nickel selenide nanostructures as highly conductive and binderless electrode with superior energy storage performance. Adv Energy Mater 7(4):1601362

    Article  Google Scholar 

  13. Xu P, Zeng W, Luo S, Ling C, Xiao J, Zhou A (2017) 3D Ni-Co selenide nanorod array grown on carbon fiber paper: towards high-performance flexible supercapacitor electrode with new energy storage mechanism. Electrochim Acta 241:41–49

    Article  CAS  Google Scholar 

  14. Du N, Zheng W, Li X, He G, Wang L, Shi J (2017) Nanosheet-assembled NiS hollow structures with double shells and controlled shapes for high-performance supercapacitors. Chem Eng J 323:415–424

    Article  CAS  Google Scholar 

  15. Wei C, Cheng C, Cheng Y, Wang Y, Xu Y, Du W, Pang H (2015) Comparison of NiS2 and α-NiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment. Dalton T 44:17278–17285

    Article  CAS  Google Scholar 

  16. Chen W, Xia C, Alshareef H (2014) One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8:9531–9541

    Article  CAS  PubMed  Google Scholar 

  17. Xie S, Gou J, Zhao Y, Zhao W, Gao Z (2022) Construction of α-NixCo(1–x)(OH)2 from ZIF-67 as highly efficient supercapacitor electrodes. J Alloys Compd 899:163302

    Article  CAS  Google Scholar 

  18. Yang J, Liu H, Martens WN, Frost RL (2010) Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J Phys Chem C 114(1):111–119

    Article  CAS  Google Scholar 

  19. Wang Z, Li J, Tian X, Wang X, Yu Y, Owusu KA (2016) Porous nickel-iron selenide nanosheets as highly efficient electrocatalysts for oxygen evolution reaction. ACS Appl Mater Inter 8(30):19386–19392

    Article  CAS  Google Scholar 

  20. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57(4):603–619

    Article  CAS  Google Scholar 

  21. Wu C, Maier J, Yu Y (2016) Generalizable synthesis of metal-sulfides/carbon hybrids with multiscale, hierarchically ordered structures as advanced electrodes for lithium storage. Adv Mater 28(1):174–180

    Article  CAS  PubMed  Google Scholar 

  22. Qian L, Gu L, Yang L, Yuan H, Xiao D (2013) Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation. Nanoscale 5(16):7388–7396

    Article  CAS  PubMed  Google Scholar 

  23. Fu J, Li L, Yun JM, Lee D, Ryu BK, Kim KH (2019) Two-dimensional titanium carbide (MXene)-wrapped sisal-like NiCo2S4 as positive electrode for high-performance hybrid pouch-type asymmetric supercapacitor. Chem Eng J 375:121939

    Article  CAS  Google Scholar 

  24. Gao X, Zhang Y, Zhao Y, Yin S, Gui J, Sun C (2022) Heterointerface engineering and piezoelectric effect enhanced performance of self-charging supercapacitors power cell. Nano Energy 91:106701

    Article  CAS  Google Scholar 

  25. Zhang R, Dong J, Zhang W, Ma L, Jiang Z, Wang J (2022) Synergistically coupling of 3D FeNi-LDH arrays with Ti3C2Tx-MXene nanosheets toward superior symmetric supercapacitor. Nano Energy 91:106633

    Article  CAS  Google Scholar 

  26. Ma Y, Zhang L, Yan Z, Cheng B, Yu J, Liu T (2022) Sandwich-shell structured CoMn2O4/C hollow nanospheres for performance-enhanced sodium-ion hybrid supercapacitor. Adv Energy Mater 12(11):2103820

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Shandong Provincial Natural Science Foundation (ZR2020MB079) and Doctoral Program of Binzhou University (2021Y22).

Author information

Authors and Affiliations

Authors

Contributions

Shengli Xie: synthesis of electrode materials, electrochemical performance test, and writing—reviewing and editing; Jianxia Gou: ideas and formulation of overarching research goals; Yanfeng Zhu: electrochemical performance test; Yaping Li: synthesis of electrode materials.

Corresponding author

Correspondence to Jianxia Gou.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3582 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Gou, J., Zhu, Y. et al. Mixed Ni-Co selenides as advanced electrode materials for high-performance supercapacitor. Ionics 29, 3365–3371 (2023). https://doi.org/10.1007/s11581-023-05038-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05038-3

Keywords

Navigation