Skip to main content

Advertisement

Log in

Bamboo fiber–derived bifunctional electrocatalyst for rechargeable Zn-air batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Low-cost and high-performance bifunctional electrocatalysts for efficient oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) are vital for the applications of rechargeable Zn-air batteries (ZABs). Herein, a porous carbon material is fabricated by traditional pulp and papermaking and carbonization process from bamboo. The resultant carbon paper catalyst possesses a high surface area, porous structure, and high content of nitrogen. Benefiting from these characteristics, this material exhibits remarkable ORR and OER catalytic performances. The aqueous rechargeable Zn-air batteries assembled with this catalyst exhibit a high power density of 279.5 mW cm−2. This work paves an encouraging way for the industrial production of cost-effective catalysts in a sustainable manner.

Graphical abstract

Bamboo-derived N-doped porous carbon material with enhanced electrocatalytic for promoting electrochemical energy storage

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article. The database used and/or analyses during the current study are available from the corresponding author on reasonable request.

References

  1. Ma W, Liu X, Li C, Yin H, Xi W, Liu R, He G, Zhao X, Luo J, Ding Y (2018) Rechargeable Al–CO2 batteries for reversible utilization of CO2. Adv Mater 30:1801152. https://doi.org/10.1002/adma.201801152

    Article  CAS  Google Scholar 

  2. Liu X, Ma W, Lei X, Zhang S, Ding Y (2020) Rechargeable Na–SO2 battery with ethylenediamine additive in ether-based electrolyte. Adv Funct Mater 30:2002120. https://doi.org/10.1002/adfm.202002120

    Article  CAS  Google Scholar 

  3. Jian T, Ma W, Xu C, Liu H, Wang J (2023) Intermetallic-driven highly reversible electrocatalysis in Li–CO2 battery over nanoporous Ni3Al/Ni heterostructure. eScience:100114. 10.1016/j.esci.2023.100114

  4. Li T, Peng X, Cui P, Shi G, Yang W, Chen Z, Huang Y, Chen Y, Peng J, Zou R, Zeng X, Yu J, Gan J, Mu Z, Chen Y, Zeng J, Liu J, Yang Y, Wei Y, Lu J (2021) Recent progress and future perspectives of flexible metal-air batteries. SmartMat 2:519–553. https://doi.org/10.1002/smm2.1076

    Article  CAS  Google Scholar 

  5. Liu D, Tong Y, Yan X, Liang J, Dou SX (2019) Recent advances in carbon-based bifunctional oxygen catalysts for zinc-air batteries. Batteries & Supercaps 2:743–765. https://doi.org/10.1002/batt.201900052

    Article  Google Scholar 

  6. Chai GL, Qiu K, Qiao M, Titirici MM, Shang C, Guo Z (2017) Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N Co-doped graphene frameworks. Energy Environ Sci 10:1186–1195. https://doi.org/10.1039/c6ee03446b

    Article  CAS  Google Scholar 

  7. Huang ZF, Wang J, Peng Y, Jung C-Y, Fisher A, Wang X (2017) Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv Energy Mater 7:1700544. https://doi.org/10.1002/aenm.201700544

    Article  CAS  Google Scholar 

  8. Kim JH, Shin D, Lee J, Baek DS, Shin TJ, Kim YT, Jeong HY, Kwak JH, Kim H, Joo SH (2020) A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction. ACS Nano 14:1990–2001. https://doi.org/10.1021/acsnano.9b08494

    Article  CAS  PubMed  Google Scholar 

  9. Du L, Xing L, Zhang G, Dubois M, Sun S (2020) Strategies for engineering high-performance PGM-free catalysts toward oxygen reduction and evolution reactions. Small Methods 4:2000016. https://doi.org/10.1002/smtd.202000016

    Article  CAS  Google Scholar 

  10. Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6:2839–2855. https://doi.org/10.1039/c3ee41444b

    Article  CAS  Google Scholar 

  11. Patel MA, Luo F, Savaram K, Kucheryavy P, Xie Q, Flach C, Mendelsohn R, Garfunkel E, Lockard JV, He H (2017) P and S dual-doped graphitic porous carbon for aerobic oxidation reactions: enhanced catalytic activity and catalytic sites. Carbon 114:383–392. https://doi.org/10.1016/j.carbon.2016.11.064

    Article  CAS  Google Scholar 

  12. Sun T, Wang J, Qiu C, Ling X, Tian B, Chen W, Su C (2018) B, N codoped and defect-rich nanocarbon material as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions. Adv Sci (Weinh) 5:1800036. https://doi.org/10.1002/advs.201800036

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Fan X, Jian J, Yu D, Zhang Z, Dai L (2017) A general polymer-assisted strategy enables unexpected efficient metal-free oxygen-evolution catalysis on pure carbon nanotubes. Energy Environ Sci 10:2312–2317. https://doi.org/10.1039/c7ee01702b

    Article  CAS  Google Scholar 

  14. Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z (2019) Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv Mater 31:1804799. https://doi.org/10.1002/adma.201804799

    Article  CAS  Google Scholar 

  15. Zhao S, Wang DW, Amal R, Dai L (2019) Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv Mater 31:1801526. https://doi.org/10.1002/adma.201801526

    Article  CAS  Google Scholar 

  16. Fang W, Hu H, Jiang T, Li G, Wu M (2019) N-and S-doped porous carbon decorated with in-situ synthesized Co–Ni bimetallic sulfides particles: a cathode catalyst of rechargeable Zn-air batteries. Carbon 146:476–485. https://doi.org/10.1016/j.carbon.2019.01.027

    Article  CAS  Google Scholar 

  17. Fang W, Bai Z, Yu X, Zhang W, Wu M (2020) Pollen-derived porous carbon decorated with cobalt/iron sulfide hybrids as cathode catalysts for flexible all-solid-state rechargeable Zn-air batteries. Nanoscale 12:11746–11758. https://doi.org/10.1039/d0nr02376k

    Article  CAS  PubMed  Google Scholar 

  18. Tang K, Hu H, Xiong Y, Chen L, Zhang J, Yuan C, Wu M (2022) Hydrophobization engineering of the air-cathode catalyst for improved oxygen diffusion towards efficient zinc-air batteries. Angew Chem 61:e202202671. https://doi.org/10.1002/anie.202202671

    Article  CAS  Google Scholar 

  19. Fang W, Luo F, Zhao J, Dong H, Zhu J, Wu M (2022) Co9S8 nanoparticles embedded in egg white-derived porous carbon as an efficient bifunctional cathode catalyst for Zn-air batteries. Sustain Energ & Fuels 6:5111–5120

    Article  CAS  Google Scholar 

  20. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764. https://doi.org/10.1126/science.1168049

    Article  CAS  PubMed  Google Scholar 

  21. El-Sawy AM, Mosa IM, Su D, Guild CJ, Khalid S, Joesten R, Rusling JF, Suib SL (2016) Controlling the active sites of sulfur-doped carbon nanotube-graphene nanolobes for highly efficient oxygen evolution and reduction catalysis. Adv Energy Mater 6:1501966. https://doi.org/10.1002/aenm.201501966

    Article  CAS  Google Scholar 

  22. Sun T, Wu Q, Jiang Y, Zhang Z, Du L, Yang L, Wang X, Hu Z (2016) Sulfur and nitrogen codoped carbon tubes as bifunctional metal-free electrocatalysts for oxygen reduction and hydrogen evolution in acidic media. Chemistry 22:10326–10329. https://doi.org/10.1002/chem.201601535

    Article  CAS  PubMed  Google Scholar 

  23. Liu ZW, Peng F, Wang HJ, Yu H, Zheng WX, Yang J (2011) Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew Chem Int Ed Eng 50:3257–3261. https://doi.org/10.1002/anie.201006768

    Article  CAS  Google Scholar 

  24. Zhang J, Zhao Z, Xia Z, Dai L (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10:444–452. https://doi.org/10.1038/nnano.2015.48

    Article  CAS  PubMed  Google Scholar 

  25. Vineesh TV, Kumar MP, Takahashi C, Kalita G, Alwarappan S, Pattanayak DK, Narayanan TN (2015) Bifunctional electrocatalytic activity of boron-doped graphene derived from boron carbide. Adv Energy Mater 5:1500658. https://doi.org/10.1002/aenm.201500658

    Article  CAS  Google Scholar 

  26. Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z (2011) Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed Eng 50:7132–7135. https://doi.org/10.1002/anie.201101287

    Article  CAS  Google Scholar 

  27. Hu C, Dai L (2016) Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew Chem Int Ed Eng 55:11736–11758. https://doi.org/10.1002/anie.201509982

    Article  CAS  Google Scholar 

  28. Peng X, Zhang L, Chen Z, Zhong L, Zhao D, Chi X, Zhao X, Li L, Lu X, Leng K, Liu C, Liu W, Tang W, Loh KP (2019) Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv Mater 31:1900341. https://doi.org/10.1002/adma.201900341

    Article  CAS  Google Scholar 

  29. Wu K, Zhang L, Yuan Y, Zhong L, Chen Z, Chi X, Lu H, Chen Z, Zou R, Li T, Jiang C, Chen Y, Peng X, Lu J (2020) An iron-decorated carbon aerogel for rechargeable flow and flexible zn-air batteries. Adv Mater 32:2002292. https://doi.org/10.1002/adma.202002292

    Article  CAS  Google Scholar 

  30. Zhong L, Jiang C, Zheng M, Peng X, Liu T, Xi S, Chi X, Zhang Q, Gu L, Zhang S, Shi G, Zhang L, Wu K, Chen Z, Li T, Dahbi M, Alami J, Amine K, Lu J (2021) Wood carbon based single-atom catalyst for rechargeable Zn–air batteries. ACS Energy Lett 6:3624–3633. https://doi.org/10.1021/acsenergylett.1c01678

    Article  CAS  Google Scholar 

  31. Hao W, Wu R, Huang H, Ou X, Wang L, Sun D, Ma X, Guo Y (2020) Fabrication of practical catalytic electrodes using insulating and eco-friendly substrates for overall water splitting. Energy Environ Sci 13:102–110. https://doi.org/10.1039/c9ee00839j

    Article  CAS  Google Scholar 

  32. Gao T, Xu C, Li R, Zhang R, Wang B, Jiang X, Hu M, Bando Y, Kong D, Dai P, Wang XB (2019) Biomass-derived carbon paper to sandwich magnetite anode for long-life Li-ion battery. ACS Nano 13:11901–11911. https://doi.org/10.1021/acsnano.9b05978

    Article  CAS  PubMed  Google Scholar 

  33. Yu J, Dai Y, Zhang Z, Liu T, Zhao S, Cheng C, Tan P, Shao Z, Ni M (2022) Tailoring structural properties of carbon via implanting optimal co nanoparticles in n-rich carbon cages toward high-efficiency oxygen electrocatalysis for rechargeable Zn-air batteries. Carbon Energy 4:576–585. https://doi.org/10.1002/cey2.171

    Article  CAS  Google Scholar 

  34. Cui X, Gao L, Lei S, Liang S, Zhang J, Sewell C. D, Xue W, Liu Q, Lin Z, Yang Y (2020) Simultaneously crafting single-atomic Fe sites and graphitic layer-wrapped Fe3C nanoparticles encapsulated within mesoporous carbon tubes for oxygen reduction. Adv Funct Mater 31:2009197. https://doi.org/10.1002/adfm.202009197

  35. Yang T, Chen Y, Liu Y, Liu X, Gao S (2022) Self-sacrificial template synthesis of Fe, N co-doped porous carbon as efficient oxygen reduction electrocatalysts towards Zn-air battery application. Chin Chem Lett 33:2171–2177. https://doi.org/10.1016/j.cclet.2021.09.014

    Article  CAS  Google Scholar 

  36. Zong L, Chen X, Dou S, Fan K, Wang Z, Zhang W, Du Y, Xu J, Jia X, Zhang Q, Li X, Deng Y, Chen Y, Wang L (2021) Stable confinement of Fe/Fe3C in Fe, N-codoped carbon nanotube towards robust zinc-air batteries. Chin Chem Lett 32:1121–1126. https://doi.org/10.1016/j.cclet.2020.08.029

    Article  CAS  Google Scholar 

  37. Singh SK, Takeyasu K, Nakamura J (2019) Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv Mater 31:1804297. https://doi.org/10.1002/adma.201804297

    Article  CAS  Google Scholar 

  38. Tang C, Wang HF, Chen X, Li BQ, Hou TZ, Zhang B, Zhang Q, Titirici MM, Wei F (2016) Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv Mater 28:6845–6851. https://doi.org/10.1002/adma.201601406

    Article  CAS  PubMed  Google Scholar 

  39. Yang H. B, Miao J, Hung S.-F, Chen J, Tao H. B, Wang X, Zhang L, Chen R, Gao J, Chen H. M (2016) Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci Adv 2:1501122. https://doi.org/10.1126/sciadv.1501122

  40. Liu H, He G, Liu X, Zhu Y, Eigler S, Han L (2021) Ion-induced formation of hierarchical porous nitrogen-doped carbon materials with enhanced oxygen reduction. ChemCatChem 13:3112–3118. https://doi.org/10.1002/cctc.202002045

    Article  CAS  Google Scholar 

  41. Lu T, Hu X, He J, Li R, Gao J, Lv Q, Yang Z, Cui S, Huang C (2021) Aqueous/solid state Zn-air batteries based on N doped graphdiyne as efficient metal-free bifunctional catalyst. Nano Energy 85:106024. https://doi.org/10.1016/j.nanoen.2021.106024

    Article  CAS  Google Scholar 

  42. Liu J, Wang C, Song Y, Zhang S, Zhang Z, He L, Du M (2021) Two-dimensional triazine-based porous framework as a novel metal-free bifunctional electrocatalyst for zinc-air batty. J Colloid Interface Sci 591:253–263. https://doi.org/10.1016/j.jcis.2021.02.007

    Article  CAS  PubMed  Google Scholar 

  43. Wang Q, Lei Y, Chen Z, Wu N, Wang Y, Wang B, Wang Y (2018) Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene–CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn–air batteries. J Mater Chem A 6:516–526. https://doi.org/10.1039/c7ta08423d

    Article  CAS  Google Scholar 

  44. Li BQ, Zhao CX, Chen S, Liu JN, Chen X, Song L, Zhang Q (2019) Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries. Adv Mater 31:1900592. https://doi.org/10.1002/adma.201900592

    Article  CAS  Google Scholar 

  45. Ge X, Liu Y, Goh FW, Hor TS, Zong Y, Xiao P, Zhang Z, Lim SH, Li B, Wang X, Liu Z (2014) Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. ACS Appl Mater Interfaces 6:12684–12691. https://doi.org/10.1021/am502675c

    Article  CAS  PubMed  Google Scholar 

  46. Lu HS, Zhang H, Liu R, Zhang X, Zhao H, Wang G (2017) Macroscale cobalt-MOFs derived metallic Co nanoparticles embedded in N-doped porous carbon layers as efficient oxygen electrocatalysts. Appl Surf Sci 392:402–409. https://doi.org/10.1016/j.apsusc.2016.09.045

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China, State Key Laboratory of Pulp and Paper Engineering. We acknowledge the financial support from National Program for Support of Topnotch Young Professionals, Guangdong Basic and Applied Basic Research Foundation, State Key Laboratory of Pulp and Paper Engineering.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Jian Yu. Zehong Chen, Tingzhen Li, and Yongfa Huang were responsible for directing the experiment process. The first draft of the manuscript was written by Jian Yu. Zehong Chen was responsible for the first revision of the manuscript. Linxin Zhong, Wu Yang and Xinwen Peng were responsible for the final revision of the manuscript. All the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Xinwen Peng.

Ethics declarations

Ethics approval

This research work did not involve any human or animal participants.

Consent to participate

All the authors have approved the manuscript and agree with submission to cellulose.

Consent for publication

The authors hereby consent to publication of the present research work in this journal, if selected for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1:

Figures S1-S11, Tables S1-S3 (DOCX 1501 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Chen, Z., Zhong, L. et al. Bamboo fiber–derived bifunctional electrocatalyst for rechargeable Zn-air batteries. Ionics 29, 3193–3202 (2023). https://doi.org/10.1007/s11581-023-05009-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05009-8

Keywords

Navigation