Skip to main content

Advertisement

Log in

Cu-based MOF-derivatived catalyst for efficient electrocatalytic reduction of nitrogen and nitrate to produce ammonia

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Electrochemical synthesis of ammonia is considered to be a promising approach due to its environmentally friendly process, great effort has been made for improving the catalyst to obtain satisfying catalytic activity and selectivity. Herein, we attempted to prepare the MOF-based derivative Cu/Cu2O@C via the wet method for N2 and NO3 reduction to synthesize ammonia. For the nitrogen reduction, the as-prepared catalyst exhibited an excellent ammonia yield (6.02 μmol∙cm−2∙h−1) and Faraday efficiency (FE, 10.48%) at − 0.5 V. While the overall yield of catalytic nitrate reduction reached 158.66 μmol∙cm−2∙h−1 and the FE reached 76.97% owing to higher solubility and a better conversion pathway. This is considerably higher than the yield of nitrogen reduction while preventing the energy consumption of reforming hydrogen production. This work helps to promote the development of artificial ammonia synthesis under ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Liang XY, Ren XF, Yang QY, Gao LG, Gao MF, Yang YA, Zhu HD, Li GX, Ma TL, Liu AM (2021) A two-dimensional MXene-supported metal-organic framework for highly selective ambient electrocatalytic nitrogen reduction. Nanoscale 13(5):2843–2848

    Article  CAS  PubMed  Google Scholar 

  2. Liu AM, Liang XY, Gao MF, Ren XF, Gao LG, Yang YA, Zhu HD, Li GX, Ma TL (2022) Ru and Fe Alloying on a Two-Dimensional MXene Support for Enhanced Electrochemical Synthesis of Ammonia. Chemcatchem 14(7):e202101775

  3. Wu T, Zhao H, Zhu X, Xing Z, Liu Q, Liu T, Gao S, Lu S, Chen G, Asiri AM, Zhang Y, Sun X (2020) Identifying the origin of Ti3+ activity toward enhanced electrocatalytic N2 reduction over TiO2 nanoparticles modulated by mixed-valent copper. Adv Mater 32(30):2000299

  4. Liu JX, Richards D, Singh N, Goldsmith BR (2019) Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals. ACS Catal 9(8):7052–7064

    Article  CAS  Google Scholar 

  5. Wang YT, Zhou W, Jia RR, Yu YF, Zhang B (2020) Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew Chem Int Edit 59(13):5350–5354

    Article  CAS  Google Scholar 

  6. Schlogl R (2003) Catalytic synthesis of ammonia - a “never-ending story”? Angew Chem Int Edit 42(18):2004–2008

    Article  Google Scholar 

  7. Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330(6001):192–196

    Article  CAS  PubMed  Google Scholar 

  8. Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451(7176):293–296

    Article  CAS  PubMed  Google Scholar 

  9. Liu AM, Liang XY, Ren XF, Guan WX, Gao MF, Yang YN, Yang QY, Gao LG, Li YQ, Ma TL (2020) Recent progress in mxene-based materials: potential high-performance electrocatalysts. Adv Funct Mater 30(38):2003437

  10. Yu X, Han P, Wei Z, Huang L, Gu Z, Peng S, Ma J, Zheng G (2018) Boron-doped graphene for electrocatalytic N2 reduction. Joule 2(8):1610–1622

    Article  CAS  Google Scholar 

  11. Wang M, Liu S, Qian T, Liu J, Zhou J, Ji H, Xiong J, Zhong J, Yan C (2019) Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat Commun 10(1):341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cao N, Chen Z, Zang K, Xu J, Zhong J, Luo J, Xu X, Zheng G (2019) Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nat Commun 10(1):2877

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tao H, Choi C, Ding L-X, Jiang Z, Han Z, Jia M, Fan Q, Gao Y, Wang H, Robertson AW, Hong S, Jung Y, Liu S, Sun Z (2019) Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem-Us 5(1):204–214

    Article  CAS  Google Scholar 

  14. Li C, Mou S, Zhu X, Wang F, Wang Y, Qiao Y, Shi X, Luo Y, Zheng B, Li Q, Sun X (2019) Dendritic Cu: a high-efficiency electrocatalyst for N2 fixation to NH3 under ambient conditions. Chem Commun 55(96):14474–14477

    Article  CAS  Google Scholar 

  15. Shi M-M, Bao D, Wulan B-R, Li Y-H, Zhang Y-F, Yan J-M, Jiang Q (2017) Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv Mater 29(17):1606550

  16. Liang J, Liu Q, Alshehri AA, Sun X (2022) Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Research Energy 1:e9120010

    Article  Google Scholar 

  17. Liu Q, Xu T, Luo Y, Kong Q, Li T, Lu S, Alshehri AA, Alzahrani KA, Sun X (2021) Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr Opin Electroche 29:100766

    Article  CAS  Google Scholar 

  18. Chen H-J, Xu Z-Q, Sun S, Luo Y, Liu Q, Hamdy MS, Feng Z-S, Sun X, Wang Y (2022) Plasma-etched Ti2O3 with oxygen vacancies for enhanced NH3 electrosynthesis and Zn–N2 batteries. Inorg Chem Front 9(18):4608–4613

    Article  CAS  Google Scholar 

  19. Chen H, Liang J, Dong K, Yue L, Li T, Luo Y, Feng Z, Li N, Hamdy MS, Alshehri AA, Wang Y, Sun X, Liu Q (2022) Ambient electrochemical N2-to-NH3 conversion catalyzed by TiO2 decorated juncus effusus-derived carbon microtubes. Inorg Chem Front 9(7):1514–1519

    Article  CAS  Google Scholar 

  20. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1(10):636–639

    Article  CAS  Google Scholar 

  21. Liu AM, Gao MF, Ren XF, Meng FN, Yang YN, Yang QY, Guan WX, Gao LG, Liang XY, Ma TL (2020) A two-dimensional Ru@MXene catalyst for highly selective ambient electrocatalytic nitrogen reduction. Nanoscale 12(20):10933–10938

    Article  CAS  PubMed  Google Scholar 

  22. Gou FL, Wang H, Fu MM, Jiang YM, Shen W, He RX, Li M (2023) Boron-induced electron localization in Cu nanowires promotes efficient nitrate reduction to ammonia in neutral media. Appl Surf Sci 612:155872

    Article  CAS  Google Scholar 

  23. Wu K, Sun C, Wang Z, Song Q, Bai X, Yu X, Li Q, Wang Z, Zhang H, Zhang J, Tong X, Liang Y, Khosla A, Zhao Z (2022) Surface reconstruction on uniform Cu nanodisks boosted electrochemical nitrate reduction to ammonia. Acs Mater Lett 4(4):650–656

    Article  CAS  Google Scholar 

  24. Luo YJ, Chen K, Shen P, Li XC, Li XT, Li YH, Chu K (2023) B-doped MoS2 for nitrate electroreduction to ammonia. J Colloid Interf Sci 629:950–957

    Article  CAS  Google Scholar 

  25. Wang HP, Zhao DL, Liu CZ, Fan XY, Li ZR, Luo YS, Zheng DD, Sun SJ, Chen J, Zhang J, Liu Y, Gao SY, Gong F, Sun XP (2022) FeS2@TiO2 nanobelt array enabled high-efficiency electrocatalytic nitrate reduction to ammonia. J Mater Chem A 10(46):24462–24467

    Article  CAS  Google Scholar 

  26. Liu Q, Xie LS, Liang J, Ren YC, Wang YY, Zhang LC, Yue LC, Li TS, Luo YS, Li N, Tang B, Liu Y, Gao SY, Alshehri AA, Shakir I, Agboola PO, Kong QQ, Wang QY, Ma DW, Sun XP (2022) Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo2O4 nanowire array. Small 18(13):2106961

  27. Xu X, Hu L, Li ZR, Xie LS, Sun SJ, Zhang LC, Li J, Luo YS, Yan XD, Hamdy MS, Kong QQ, Sun XP, Liu Q (2022) Oxygen vacancies in Co3O4 nanoarrays promote nitrate electroreduction for ammonia synthesis. Sustain Energ Fuels 6(18):4130–4136

    Article  CAS  Google Scholar 

  28. Li ZR, Liang J, Liu Q, Xie LS, Zhang LC, Ren YC, Yue LC, Li N, Tang B, Alshehri AA, Hamdy MS, Luo YL, Kong QQ, Sun XP (2022) High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. Mater Today Phys 23:100619

  29. Liu Q, Liu Q, Xie L, Ji Y, Li T, Zhang B, Li N, Tang B, Liu Y, Gao S, Luo Y, Yu L, Kong Q, Sun X (2022) High-performance electrochemical nitrate reduction to ammonia under ambient conditions using a FeOOH nanorod catalyst. Acs Appl Mater Inter 14(15):17312–17318

    Article  CAS  Google Scholar 

  30. Wang CC, Ye F, Shen JH, Xue KH, Zhu YH, Li CZ (2022) In situ loading of Cu2O active sites on island-like copper for efficient electrochemical reduction of nitrate to ammonia. Acs Appl Mater Inter 14(5):6680–6688

    Article  CAS  Google Scholar 

  31. Lv X, Mou T, Li J, Kou L, Frauenheim T (2022) Tunable surface chemistry in heterogeneous bilayer single-atom catalysts for electrocatalytic NOx reduction to ammonia. Adv Funct Mater 32(28):2201262

  32. Li LX, Sun WJ, Zhang HY, Wei JL, Wang SX, He JH, Li NJ, Xu QF, Chen DY, Li H, Lu JM (2021) Highly efficient and selective nitrate electroreduction to ammonia catalyzed by molecular copper catalyst@Ti3C2Tx MXene. J Mater Chem A 9(38):21771–21778

    Article  CAS  Google Scholar 

  33. Hu T, Wang MT, Guo CX, Li CM (2022) Functionalized MXenes for efficient electrocatalytic nitrate reduction to ammonia. J Mater Chem A 10(16):8923–8931

    Article  CAS  Google Scholar 

  34. Zhang X, Wang CH, Guo YM, Zhang B, Wang YT, Yu YF (2022) Cu clusters/TiO2-x with abundant oxygen vacancies for enhanced electrocatalytic nitrate reduction to ammonia. J Mater Chem A 10(12):6448–6453

    Article  CAS  Google Scholar 

  35. Zhang ZY, Chen AC (2016) Simultaneous removal of nitrate and hardness ions from groundwater using electrodeionization. Sep Purif Technol 164:107–113

    Article  CAS  Google Scholar 

  36. Yin SY, Xiao Y, Gu XM, Hao QC, Liu HL, Hao ZY, Meng GP, Pan XY, Pei QM (2019) Geostatistical analysis of hydrochemical variations and nitrate pollution causes of groundwater in an alluvial fan plain. Acta Geophys 67(4):1191–1203

    Article  Google Scholar 

  37. Park HI, Kim DK, Choi YJ, Pak D (2005) Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor. Process Biochem 40(10):3383–3388

    Article  CAS  Google Scholar 

  38. Mikuska P, Vecera Z (2003) Simultaneous determination of nitrite and nitrate in water by chemiluminescent flow-injection analysis. Anal Chim Acta 495(1–2):225–232

    Article  CAS  Google Scholar 

  39. Shen P, Wang GH, Chen K, Kang JL, Ma DW, Chu K (2023) Selenium-vacancy-rich WSe2 for nitrate electroreduction to ammonia. J Colloid Interf Sci 629:563–570

    Article  CAS  Google Scholar 

  40. Deng Z, Ma C, Fan X, Li Z, Luo Y, Sun S, Zheng D, Liu Q, Du J, Lu Q, Zhen B, Sun X (2022) Construction of CoP/TiO2 nanoarray for enhanced electrochemical nitrate reduction to ammonia. Mater Today Phys 28:100854

    Article  CAS  Google Scholar 

  41. Zhao YL, Liu Y, Zhang ZJ, Mo ZK, Wang CY, Gao SY (2022) Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia. Nano Energy 97(15):107124

  42. Gao Z, Lai YL, Tao Y, Xiao LH, Zhang LX, Luo F (2021) Constructing well-defined and robust Th-MOF-supported single-site copper for production and storage of ammonia from electroreduction of nitrate. Acs Central Sci 7(6):1066–1072

    Article  CAS  Google Scholar 

  43. Zhao X, Jia XX, He YN, Zhang HB, Zhou XH, Zhang HC, Zhang SS, Dong YM, Hu X, Kuklin AV, Baryshnikov GV, Agren H, Hu GZ (2021) Two-dimensional BCN matrix inlaid with single-atom-Cu driven electrochemical nitrate reduction reaction to achieve sustainable industrial-grade production of ammonia. Appl Mater Today 25:101206

  44. Liang XY, Zhu HD, Yang XX, Xue SS, Liang ZZ, Ren XF, Liu AM, Wu G (2022) Recent advances in designing efficient electrocatalysts for electrochemical nitrate reduction to ammonia. Small Struct 2200202

  45. Yan J, Wang H, Jin B, Zeng M, Peng RF (2021) Cu-MOF derived Cu/Cu2O/C nanocomposites for the efficient thermal decomposition of ammonium perchlorate. J Solid State Chem 297:122060

  46. De B, Balamurugan J, Kim NH, Lee JH (2017) Enhanced electrochemical and photocatalytic performance of core-shell CuS@carbon quantum dots@carbon hollow nanospheres. Acs Appl Mater Inter 9(3):2459–2468

    Article  CAS  Google Scholar 

  47. Kumar B, Verma DK, Singh AK, Kavita, Shukla N, Rastogi RB (2020) Nanohybrid Cu@C: synthesis, characterization and application in enhancement of lubricity. Compos Interface 27(8):777–794

    Article  CAS  Google Scholar 

  48. Chen H, Gao Y, Ye L, Yao YA, Chen XY, Wei Y, Sun LC (2018) A Cu2Se-Cu2O film electrodeposited on titanium foil as a highly active and stable electrocatalyst for the oxygen evolution reaction. Chem Commun 54(39):4979–4982

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supports of the Fundamental Research Funds for the Central Universities (DUT22LK09), the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2022-K70), the Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering, MOE (KLIEEE-20-01, KLIEEE-21-02), the Hefei Advanced Computing Center, and Supercomputing Center of Dalian University of Technology for this work are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anmin Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 915 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Xue, S., Zhu, H. et al. Cu-based MOF-derivatived catalyst for efficient electrocatalytic reduction of nitrogen and nitrate to produce ammonia. Ionics 29, 2515–2522 (2023). https://doi.org/10.1007/s11581-023-05008-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05008-9

Keywords

Navigation