Skip to main content
Log in

Unveiling the enhancing mechanism of cycling stability of Li1.2Mn0.54Ni0.13Co0.13O2-xFx cathode materials

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium-rich manganese-based material is one of the most promising cathode materials for Li ion battery due to its low cost and high specific capacity. However, the irreversible evolution of oxygen and migration of transition metals (TM) restricts its widely practical application. In this paper, F-doped Li1.2[Mn0.54Ni0.13Co0.13]O2 was prepared by co-precipitation and high temperature solid-state reaction method. The effects of F-doping on the electrochemical properties of Li1.2[Mn0.54Ni0.13Co0.13]O2 during the charge–discharge procedure were investigated. Results show that Li1.2[Mn0.54Ni0.13Co0.13]O1.95F0.05 sample has the excellent cycling stability; the discharge-specific capacity reaches 182.9 mAh g−1 after 200 cycles, with a capacity retention rate of 87.9%, which was much higher than that of the original sample (133.2 mAh g−1 and 77.5%). The relevant properties proved that F-doping can inhibit the irreversible evolution of oxygen, alleviate the structural degradation of the material, and further alleviate the dissolution of transition metals by suppressing the interfacial side reactions. This result provides reference for the practical application of Li-rich cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang R, Huang X, Wang D, Hoang TKA, Yang Y, Duan X, Chen P, Qin LC, Wen G (2018) Single-phase mixed transition metal carbonate encapsulated by graphene: facile synthesis and improved lithium storage properties. Adv Func Mater 28(10):1705817

    Google Scholar 

  2. Wang D, Qi S, Qiu Y, Zhang R, Zhang Q, Liu S, Zhang C, Chen Z, Pan H, Cao J, Wen G (2020) High-yield production of non-layered 2D carbon complexes: thickness manipulation and carbon nanotube branches for enhanced lithium storage properties. J Energy Chem 59:19–29

    Google Scholar 

  3. Shi SJ, Lou ZR, Xia TF, Wang XL, Gu CD, Tu JP (2014) Hollow Li1.2Mn0.5Co0.25Ni0.05O2 microcube prepared by binary template as a cathode material for lithium ion batteries. J Power Sources 257:198–204

    CAS  Google Scholar 

  4. He W, Guo W, Wu H, Lin L, Liu Q, Han X, Xie Q, Liu P, Zheng H, Wang L, Yu X, Peng DL (2021) Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv Mater 33:2005937

    CAS  Google Scholar 

  5. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney S (2007) Li2MnO3-stabilized LiMO2 (M= Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125

    CAS  Google Scholar 

  6. Ku K, Hong J, Kim H, Park H, Seong WM, Jung SK, Yoon G, Park KY, Kim H, Kang K (2018) Suppression of voltage decay through manganese deactivation and nickel redox buffering in high-energy layered lithium-rich electrodes. Adv Energy Mater 8:1800606

    Google Scholar 

  7. Koga H, Croguennec L, Ménétrier M, Douhil K, Belin S, Bourgeois L, Suard E, Weill F, Delmas C (2013) Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J Electrochem Soc 160:A786

    CAS  Google Scholar 

  8. Xu B, Fell CR, Chi M, Meng YS (2011) Identifying surface structural changes in layered Li-excess nickel manganeseoxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ Sci 4:2223–2233

    CAS  Google Scholar 

  9. Lin T, Schulli TU, Hu Y, Zhu X, Gu Q, Luo B, Cowie B, Wang L (2020) Faster activation and slower capacity/voltage fading: a bifunctional urea treatment on lithium-rich cathode materials. Adv Func Mater 30:1909192

    CAS  Google Scholar 

  10. Hong J, Lim HD, Lee M, Kim SW, Kim H, Oh ST, Chung GC, Kang K (2012) Critical role of oxygen evolved from layered Li–excess metal oxides in lithium rechargeable batteries. Chem Mater 24:2692–2697

    CAS  Google Scholar 

  11. Hu E, Yu X, Lin R, Bi X, Lu J, Bak S, Nam KW, Xin HL, Jaye C, Fischer DA, Amine K, Yang XQ (2018) Evolution of redox couples in Li and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat Energy 3:690–698

    CAS  Google Scholar 

  12. Hekmatfar M, Kazzazi A, Eshetu GG, Hasa I, Passerini S (2019) Understanding the electrode/electrolyte interface layer on the Li-rich nickel manganese cobalt layered oxide cathode by XPS. ACS Appl Mater Interfaces 11:43166–43179

    CAS  PubMed  Google Scholar 

  13. Yan P, Zheng J, Chen T, Luo L, Jiang Y, Wang K, Sui M, Zhang JG, Zhang S, Wang C (2018) Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nat Commu 9:1–8

    Google Scholar 

  14. Hu Y, Qin Z, Pei J, Cong B, Yang X, Chen G (2020) Reduced Li/Ni disorder degree of Na-doped Li-rich layered oxide for cathode material: experimental and calculations. ChemElectroChem 7:246–251

    CAS  Google Scholar 

  15. Sun YX, Zhang LJ, Dong SD, Zeng JB, Shen Y, Li X, Ren XF, Ma LX, Hai CX, Zhou Y (2022) Improving the electrochemical performances of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 through cooperative doping of Na+ and Mg2+. Electrochim Acta 414:140169

    CAS  Google Scholar 

  16. Lai XW, Hu GR, Peng ZD, Cao YB, Wang WG, Du K (2022) Cerium-doped lithium-rich Li1.2Mn0.56Ni0.11Co0.13O2 as cathode with high performance for lithium-ion batteries. Ionics:1–12

  17. Huang X, Zhang Z, He J, Bai Z, Lu L, Li J (2021) Effects of chromium/fluorine co-doping on the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries. J Mater Sci 56:9836–9851

    CAS  Google Scholar 

  18. Zheng J, Wu X, Yang Y (2013) Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation. Electrochim Acta 105:200–208

    CAS  Google Scholar 

  19. Wang B, Cui J, Li Z, Wang H, Zhang D, Wang Q, Sun H, Hu Z (2022) Surface F-doping for stable structure and high electrochemical performance of Li-rich Mn-based cathode materials. J Alloys Comp 929:167304

    CAS  Google Scholar 

  20. Guo WB, Zhang CY, Zhang YG, Lin L, He W, Xie QS, Sa BS, Wang LS, Peng DL (2021) A universal strategy toward the precise regulation of initial coulombic efficiency of Li-rich Mn-based cathode materials. Adv Mater 33:2103173

    CAS  Google Scholar 

  21. Rozier P, Tarascon JM (2015) Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J Electrochem Soc 162:A2490

    CAS  Google Scholar 

  22. Dahiya PP, Ghanty C, Sahoo K, Basu S, Majumder SB (2018) Suppression of voltage decay and improvement in electrochemical performance by zirconium doping in Li-rich cathode materials for Li-ion batteries. J Electrochem Soc 165(13):A3114

    CAS  Google Scholar 

  23. Fell CR, Qian D, Carroll KJ, Chi M, Jones JL, Meng YS (2013) Correlation between oxygen vacancy, microstrain, and cation distribution in lithium-excess layered oxides during the first electrochemical cycle. Chem Mater 25:1621–1629

    CAS  Google Scholar 

  24. Song B, Lai MO, Lu L (2012) Influence of Ru substitution on Li-rich 0.55Li2MnO3·0.45 LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batteries. Electrochim Acta 80:187–195

    CAS  Google Scholar 

  25. Ceder G (2010) Opportunities and challenges for first-principles materials design and applications to Li battery materials. MRS bull 35:693–701

    CAS  Google Scholar 

  26. Song B, Lai MO, Liu Z, Liu H, Lu L (2013) Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries†. J Mater Chem A 1(34):9954–9965

    CAS  Google Scholar 

  27. Zou Y, Yang X, Lv C, Liu T, Xia Y, Shang L, Waterhouse GI, Yang D, Zhang T (2017) Multishelled Ni-rich Li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries. Adv Sci 4:1600262

    Google Scholar 

  28. Li L, Wang L, Zhang X, Xue Q, Wei L, Wu F, Chen R (2017) 3D reticular Li1. 2Ni0.2Mn0.6O2 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 9:1516–1523

    CAS  PubMed  Google Scholar 

  29. Peng Z, Mu K, Cao Y, Xu L, Du K, Hu G (2019) Enhanced electrochemical performance of layered Li-rich cathode materials for lithium ion batteries via aluminum and boron dual-doping. Ceram Int 45:4184–4192

    CAS  Google Scholar 

  30. Gao XG, Li SH, Zhang HY, Zhang S, Chang SL, Li HX, Li S, Lai YQ, Zhang Z (2022) Constructing a robust integrated surface structure for enhancing the performance of Li-rich Mn-based oxides cathodes. Mater Today Energy 30:101152

    CAS  Google Scholar 

  31. Lee S, Jin W, Kim SH, Joo SH, Nam G, Oh P, Kim KY, Kwak SK, Cho J (2019) Oxygen vacancy diffusion and condensation in lithium-ion battery cathode materials. Angew Chem Int Edit 58(31):10478–10485

    CAS  Google Scholar 

  32. Ma Q, Chen Z, Zhong S, Meng J, Lai F, Li Z, Cheng C, Zhang L, Liu T (2020) Na-substitution induced oxygen vacancy achieving high transition metal capacity in commercial Li-rich cathode. Nano Energy 81:105622

    Google Scholar 

  33. Zheng J, Gu M, Xiao J, Polzin BJ, Yan P, Chen X, Wang C, Zhang JG (2014) Functioning mechanism of AlF3 coating on the Li and Mn-rich cathode materials. Chem Mater 26(22):6320–6327

    CAS  Google Scholar 

  34. Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer DR, Zhang J-G (2013) Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7:760–767

    CAS  PubMed  Google Scholar 

  35. Si M, Wang D, Zhao R, Pan D, Zhang C, Yu C, Lu X, Zhao H, Bai Y (2019) Local electric-field-driven fast Li diffusion kinetics at the piezoelectric LiTaO3 modified Li-rich cathode-electrolyte interphase. Adv Sci 7(3):1902538

    Google Scholar 

  36. Chernyavsky V, Kim A, Koshtyal Y, Rumyantsev A, Popovich A, Maximov MY (2022) Structural features of complete and partial activation of Li-rich cathodes studied by in-situ XRD. Electrochimica Acta 414:140237

    CAS  Google Scholar 

  37. Li X, Qiao Y, Guo S, Xu Z, Zhu H, Zhang X, Yuan Y, He P, Ishida M, Zhou H (2018) Direct visualization of the reversible O2−/O redox process in Li-rich cathode materials. Adv Mater 30(14):1705197

    Google Scholar 

  38. Zheng H, Zhang C, Zhang Y, Lin L, Liu P, Wang L, Wei Q, Lin J, Sa B, Xie Q, Peng DL (2021) Manipulating the local electronic structure in Li-rich layered cathode towards superior electrochemical performance. Adv Func Mater 31(30):2100783

    CAS  Google Scholar 

  39. Zhang XD, Shi JL, Liang JY, Yin YX, Zhang JN, Yu XQ, Guo YG (2018) Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating. Adv Mater 30(29):1801751

    Google Scholar 

  40. Zhu W, Tai Z, Shu C, Chong S, Guo S, Ji L, Chen Y, Liu Y (2020) The superior electrochemical performance of a Li-rich layered cathode material with Li-rich spinel Li4Mn5O12 and MgF2 double surface modifications. J Mater Chem A 8:7991–8001

    CAS  Google Scholar 

  41. Wang Y, Liu F, Fan G, Qiu X, Liu J, Yan Z, Zhang K, Cheng F, Chen J (2021) Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes. J Am Chem Soc 143:2829–2837

    CAS  PubMed  Google Scholar 

  42. Zheng J, Wu X, Yang Y (2013) Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation. Electrochimica Acta 105:200–208

    CAS  Google Scholar 

  43. Chen L, Fan X, Hu E, Ji X, Chen J, Hou S, Deng T, Li J, Su D, Yang X (2019) Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery. Chem 5:896–912

    CAS  Google Scholar 

  44. Chen J, Zou G, Deng W, Huang Z, Gao X, Liu C, Yin S, Liu H, Deng X, Tian Y (2020) Pseudo-bonding and electric-field harmony for Li-rich Mn-based oxide cathode. Adv Funct Mater 30:2004302

    CAS  Google Scholar 

  45. Fan X, Hu G, Zhang B, Ou X, Zhang J, Zhao W, Jia H, Zou L, Li P, Yang Y (2020) Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 70:104450

    CAS  Google Scholar 

  46. Ming Y, Xiang W, Qiu L, Hua WB, Li R, Wu ZG, Xu CL, Li YC, Wang D, Chen YX (2020) Dual elements coupling effect induced modification from the surface into the bulk lattice for Ni-rich cathodes with suppressed capacity and voltage decay. ACS Appl Mater 12:8146–8156

    CAS  Google Scholar 

  47. Kim K, Hwang D, Kim S, Park SO, Cha H, Lee YS, Cho J, Kwak SK, Choi NS (2020) Cyclic aminosilane-based additive ensuring stable electrode–electrolyte interfaces in Li-ion batteries. Adv Energy Mater 10:2000012

    CAS  Google Scholar 

  48. He W, Qian J, Cao Y, Ai X, Yang H (2012) Improved electrochemical performances of nanocrystalline Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. RSC Adv 2:3423–3429

    CAS  Google Scholar 

  49. Wu B, Yang X, Jiang X, Zhang Y, Shu H, Gao P, Liu L, Wang X (2018) Synchronous tailoring surface structure and chemical composition of Li-rich–layered oxide for high-energy lithium-ion batteries. Adv Func Mater 28:1803392

    Google Scholar 

Download references

Funding

This research is funded by the Natural Science Foundation of China (No. 51504111 and 51564029), China Postdoctoral Science Foundation (2018M633418) and Analysis and Testing Foundation of Kunming University of Science and Technology (2021M20202202075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Huang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Zhang, P., Huang, H. et al. Unveiling the enhancing mechanism of cycling stability of Li1.2Mn0.54Ni0.13Co0.13O2-xFx cathode materials. Ionics 29, 2573–2586 (2023). https://doi.org/10.1007/s11581-023-05003-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05003-0

Keywords

Navigation