Skip to main content
Log in

Highly active and durable hollow NiPt/C as electrocatalysts for methanol electro-oxidation reaction

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

At present, platinum-based alloys are irreplaceable catalysts for direct methanol fuel cells. How to reduce the amount of Pt and improve its electrocatalytic performance is one of the difficulties in this field. Noble-metal hollow nanocrystals are one of the most promising catalysts due to their high specific surface area and high stability. In this paper, we used the combination of electrochemical displacement reaction and Kirkendal effect to prepare hollow NiPt/C by sacrificial template method, and explore the effect of capping agent content on the electrocatalytic methanol oxidation reaction (MOR) performance of synthetic materials. Electrochemical tests show that the hollow binary catalyst prepared with a capping agent content of 50 mg had the highest electrochemical active area. In particular, 4000-s chronoamperometry tests in acidic solution show that the stability of NiPt/C with hollow structure is enhanced. We ascribe the better catalytic activity to the hollow feature, higher specific electrochemical surface area, and more abundant active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zuo Y, Sheng W, Tao W et al (2022) Direct methanol fuel cells system–a review of dual-role electrocatalysts for oxygen reduction and methanol oxidation. J Mater Sci Technol 114:29–41

    Article  Google Scholar 

  2. Ramli Z, Kamarudin SK (2018) Platinum-based catalysts on various carbon supports and conducting polymers for direct methanol fuel cell applications: a review. Nano Scale Res Lett 133:13551–13557

  3. Zhou X, Gan Y, Du J et al (2013) A review of hollow Pt-based nanocatalysts applied in proton exchange membrane fuel cells. J Power Sources 232:310–322

    Article  CAS  Google Scholar 

  4. Guo XJ, Zhang Q, Li YN et al (2022) Nanosized Rh grown on single-walled carbon nanohorns for efficient methanol oxidation reaction. Rare Met 41:2108–2117

    Article  CAS  Google Scholar 

  5. Brouzgou A, Song SQ, Tsiakaras P (2012) Low and non-platinum electrocatalysts for PEMFCs: current status, challenges and prospects. Appl Catal B 127:371–388

    Article  CAS  Google Scholar 

  6. Othman R, Dicks AL, Zhu Z (2012) Non precious metal catalysts for the PEM fuel cell cathode. Int J Hydrog Energy 37(1):357–372

    Article  CAS  Google Scholar 

  7. Ishihara A, Ohgi Y, Matsuzawa K et al (2010) Progress in non-precious metal oxide-based cathode for polymer electrolyte fuel cells. Electrochim Acta 55(27):8005–8012

    Article  CAS  Google Scholar 

  8. Baronia R, Goel J, Tiwari S et al (2017) Efficient electro-oxidation of methanol using PtCo nanocatalysts supported reduced graphene oxide matrix as anode for DMFC. Int J Hydrog Energy 1042(15):10238–10247

    Article  Google Scholar 

  9. Guerrero-Ortega LPA, Manzo-Robledo A, Ramirez-Meneses E et al (2018) Methanol electro-oxidation reaction at the interface of (bi)-metallic (PtNi) synthesized nanoparticles supported on carbon Vulcan. Int J Hydrog Energy 43(12):6117–6130

    Article  CAS  Google Scholar 

  10. Zhang J, Sun S, Li Y et al (2017) A strategy in deep eutectic solvents for carbon nanotube-supported PtCo nanocatalysts with enhanced performance toward methanol electrooxidation. Int J Hydrog Energy 42(43):26744–26751

    Article  CAS  Google Scholar 

  11. Liu Y, Ren G, Wang M et al (2019) Facile synthesis of trimetallic PtAuCu alloy nanowires as high-performance electrocatalysts for methanol oxidation reaction. J Alloy 780:504–511

    Article  CAS  Google Scholar 

  12. Chen J, Lim S, Kuo C et al (2019) Sub-1 nm PtSn ultrathin sheet as an extraordinary electrocatalyst for methanol and ethanol oxidation reactions. J Colloid Interface 545:54–62

    Article  CAS  Google Scholar 

  13. Khan TS, Jalid F, Haider MA (2018) First-principle microkinetic modeling of ethanol dehydrogenation on metal catalyst surfaces in non-oxidative environment: design of bimetallic alloys. Top Catal 61(18–19):1820–1831

    Article  CAS  Google Scholar 

  14. Lu Q, Huang J, Han C et al (2018) Facile synthesis of composition-tunable PtRh nanosponges for methanol oxidation reaction. Electrochim Acta 266:305–311

    Article  CAS  Google Scholar 

  15. Bin Yousaf A, Imran M, Kasak P et al (2017) Enhanced and durable electrocatalytic performance of thin layer PtRu bimetallic alloys on Pd-nanocubes for methanol oxidation reactions. Catal Sci Technol 7(15):3283–3290

    Article  CAS  Google Scholar 

  16. Yin JW, Wang J, Ma YB et al (2021) Recent advances in the controlled synthesis and catalytic applications of two-dimensional rhodium nanomaterials. Acs Mater Lett 3(1):121–133

    Article  CAS  Google Scholar 

  17. Huang HJ, Wei YJ, Yang Y et al (2021) Controllable synthesis of grain boundary-enriched Pt nanoworms decorated on graphitic carbon nanosheets for ultrahigh methanol oxidation catalytic activity. J Energy Chem 57:601–609

    Article  CAS  Google Scholar 

  18. Wu B, Du F, Wang H et al (2022) Effects of annealing temperature of PtCu/MWCNT catalysts on their electrocatalytic performance of electrooxidation of methanol. Ionics 28(1):369–382

    Article  CAS  Google Scholar 

  19. Zheng F, Liu S, Kuo C (2016) Ultralow Pt amount of Pt-Fe alloys supported on ordered mesoporous carbons with excellent methanol tolerance during oxygen reduction reaction. Int J Hydrog Energy 41(4):2487–2497

    Article  CAS  Google Scholar 

  20. Ma X, Luo L, Zhu L et al (2013) Pt-Fe catalyst nanoparticles supported on single-wall carbon nanotubes: direct synthesis and electrochemical performance for methanol oxidation. J Power Sources 241:274–280

    Article  CAS  Google Scholar 

  21. Liu H, Yang D, Bao Y, et al (2019) One-step efficiently coupling ultrafine Pt-Ni2P nanoparticles as robust catalysts for methanol and ethanol electro-oxidation in fuel cells reaction. J Power Sources 434:226754.1–226754.9

  22. Stamenkovic VR, Fowler B, Mun BS et al (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science (New York, N.Y.) 315(5811):493–497

    Article  CAS  PubMed  Google Scholar 

  23. Huang X, Zhu E, Chen Y et al (2013) A facile strategy to Pt3Ni nanocrystals with highly porous features as an enhanced oxygen reduction reaction Catalyst. Adv Mater 25(21):2974–2979

    Article  CAS  PubMed  Google Scholar 

  24. Yuan X, Jiang X, Cao M et al (2019) Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Res 12(2):429–436

    Article  CAS  Google Scholar 

  25. Bu L, Zhang N, Guo S et al (2016) Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354(6318):1410–1414

    Article  CAS  PubMed  Google Scholar 

  26. Sevilla M, Sanchis C, Valdes-Solis T et al (2009) Highly dispersed platinum nanoparticles on carbon nanocoils and their electrocatalytic performance for fuel cell reactions. Electrochim Acta 54(8):2234–2238

    Article  CAS  Google Scholar 

  27. Xia Z, Guo S (2019) Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem Soc Rev 48(12):3265–3278

    Article  CAS  PubMed  Google Scholar 

  28. Meng W, He H Y, Yang L, et al (2022) 1D-2D hybridization: nanoarchitectonics for grain boundary-rich platinum nanowires coupled with MXene nanosheets as efficient methanol oxidation electrocatalysts Chem Eng J 450(30):137932

  29. Shan A, Chen Z, Li B et al (2015) Monodispersed, ultrathin NiPt hollow nanospheres with tunable diameter and composition via a green chemical synthesis. J Mater Chem A 3(3):1031–1036

    Article  CAS  Google Scholar 

  30. Sun Q, Ren Z, Wang R et al (2011) Platinum catalyzed growth of NiPt hollow spheres with an ultrathin shell. J Mater Chem 21(6):1925–1930

    Article  CAS  Google Scholar 

  31. Hu Y, Wu P, Zhang H et al (2012) Synthesis of graphene-supported hollow Pt-Ni nanocatalysts for highly active electrocatalysis toward the methanol oxidation reaction. Electrochim Acta 85:314–321

    Article  CAS  Google Scholar 

  32. Wu J, Yang H (2012) Study of the durability of faceted Pt3Ni oxygen-reduction electrocatalysts. Chem Cat Chem 4(10):1572–1577

    CAS  Google Scholar 

  33. Zhang H, Yin Y, Hu Y et al (2010) Pd@Pt core-shell nanostructures with controllable composition synthesized by a microwave method and their enhanced electrocatalytic activity toward oxygen reduction and methanol oxidation. J Phys Chem C 114(27):11861–11867

    Article  CAS  Google Scholar 

  34. Zhang X, Zhang J, Huang H et al (2017) Platinum nanoparticles anchored on grapheneoxide-dispersed pristine carbon nanotube supports: high-performance electrocatalysts towardmethanol electrooxidation. Electrochim Acta 258:919–926

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the support provided by School of Marine Science and Technology, Harbin Institute of Technology, Weihai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Jun Han.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, JJ., Yin, My. Highly active and durable hollow NiPt/C as electrocatalysts for methanol electro-oxidation reaction. Ionics 29, 2405–2415 (2023). https://doi.org/10.1007/s11581-023-04991-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04991-3

Keywords

Navigation