Skip to main content

Advertisement

Log in

Zwitterionic poly(ionic liquids)-based polymer electrolytes for Lithium-ion batteries applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, zwitterionic poly(ionic liquid)-based polymer electrolytes with a network structure are prepared by ultraviolet-irradiation radical polymerization of poly(ethylene glycol) methyl ether acrylate (PEGMEA) and zwitterionic liquids, and poly(ethylene glycol) diacrylate is used as cross-linker. The cross-linked structure endows the electrolytes with high thermal stability and excellent dimensional stability. The abundant ether-oxygen group of PEGMEA provides sufficient sites for the transport of Li+ and a high ionic conductivity of 0.20 × 10−3 S cm−1. The electrolyte shows a high lithium-ion transference number of 0.78, owing to the excellent dissociation ability of zwitterionic liquids towards lithium salts. The lithium symmetric battery can maintain a voltage polarization of 150 mV at 0.1 mA cm−2 over 600 h. The Li/LiFePO4 battery shows a discharge capacity of 122 mAh g−1, a capacity retention of 90.0% after 100 cycles, and an average Coulombic efficiency exceeding 99% at 0.1 C, demonstrating strong application potential in lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  2. Chu S, Cui Y, Liu N (2017) The path towards sustainable energy. Nat Mater 16(1):16–22. https://doi.org/10.1038/nmat4834

    Article  CAS  Google Scholar 

  3. Xie J, Lu Y-C (2020) A retrospective on lithium-ion batteries. Nat Commun 11(1):2499. https://doi.org/10.1038/s41467-020-16259-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Niu H, Zhang N, Ding M, Li X, Su X, Guo X, Guan P, Hu X (2022) D-endritic mesoporous silica composite ionic liquid gel polymer electrolyte improves the performance of lithium battery. Ionics 28(8):3761–3775. https://doi.org/10.1007/s11581-022-04609-0

    Article  CAS  Google Scholar 

  5. Niu H, Wang L, Guan P, Zhang N, Yan C, Ding M, Guo X, Huang T, Hu X (2021) Recent advances in application of ionic liquids in electrolyte of lithium ion batteries. J Energy Storage 40:102659. https://doi.org/10.1016/j.est.2021.102659

    Article  Google Scholar 

  6. Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Stor Mater 10:246–267. https://doi.org/10.1016/j.ensm.2017.05.013

    Article  Google Scholar 

  7. He X, Schmohl S, Wiemhöfer HD (2019) Comparative study of interfacialbehavior for polyphosphazene based polymer electrolytes and LiPF6 in EC/DMC against lithium metal anodes. Polym Test 76:505–512. https://doi.org/10.1016/j.polymertesting.2019.04.012

    Article  CAS  Google Scholar 

  8. Deng K, Zeng Q, Wang D, Liu Z, Wang G, Qiu Z, Zhang Y, Xiao M, Meng Y (2020) Nonflammable organic electrolytes for high-safety lithium-ionbatteries. Energy Stor Mater 32:425–447. https://doi.org/10.1016/j.ensm.2020.07.018

    Article  Google Scholar 

  9. Bi Z, Mu S, Zhao N, Sun W, Huang W, Guo X (2021) Cathode supported solid lithium batteries enabling high energy density and stable cyclability. Energy Stor Mater 35:512–519. https://doi.org/10.1016/j.ensm.2020.11.038

    Article  Google Scholar 

  10. Yu Y, Liu Y, Xie J (2021) Building better Li metal anodes in liquid electrolyte: challenges and progress. ACS Appl Mater Interfaces 13(1):18–33. https://doi.org/10.1021/acsami.0c17302

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Yamada Y, Sodeyama K, Watanabe E, Takada K, Tateyama Y, Yamada A (2018) Fire-extinguishing organic electrolytes for safe batteries. Nat Energy 3(1):22–29. https://doi.org/10.1038/s41560-017-0033-8

    Article  CAS  Google Scholar 

  12. Jiang L, Wang Q, Li K, Ping P, Jiang L, Sun J (2018) A self-cooling and flame-retardant electrolyte for safer lithium ion batteries. Sustain Energy Fuels 2(6):1323–1331. https://doi.org/10.1039/C8SE00111A

    Article  CAS  Google Scholar 

  13. Deb D, Bose P, Bhattacharya S (2021) Gel-polymer electrolytes plasticized with pyrrolidinium-based ionanofluid for lithium battery applications. Ionics 27(1):123–136. https://doi.org/10.1007/s11581-020-03807-y

    Article  CAS  Google Scholar 

  14. Grande L, von Zamory J, Koch SL, Kalhoff J, Paillard E, Passerini S (2015) Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes. ACS Appl Mater Interfaces 7(10):5950–5958. https://doi.org/10.1021/acsami.5b00209

    Article  CAS  PubMed  Google Scholar 

  15. Moreno JS, Deguchi Y, Panero S, Scrosati B, Ohno H, Simonetti E, Appetecchi GB (2016) N-Alkyl-N-ethylpyrrolidinium cation-based ionic liquid electrolytes for safer lithium battery systems. Electrochim Acta 191:624–630. https://doi.org/10.1016/j.electacta.2016.01.119

    Article  CAS  Google Scholar 

  16. Wang H, Sheng L, Yasin G, Wang L, Xu H, He X (2020) Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Stor Mater 33:188–215. https://doi.org/10.1016/j.ensm.2020.08.014

    Article  Google Scholar 

  17. Ding W-Q, Lv F, Xu N, Wu M-T, Liu J, Gao X-P (2021) Polyethylene oxide-based solid-state composite polymer electrolytes for rechargeable lithium batteries. ACS Appl Energy Mater 4(5):4581–4601. https://doi.org/10.1021/acsaem.1c00216

    Article  CAS  Google Scholar 

  18. Alzate-Carvajal N, Rousselot S, Storelli A, Gelinas B, Zhang X, Malveau C, Rochefort D, Dollé M (2022) A comparative study on the influence of the polymeric host for the operation of all-solid-state batteries at different temperatures. J Power Sources 535:231382. https://doi.org/10.1016/j.jpowsour.2022.231382

    Article  CAS  Google Scholar 

  19. Fu C, Homann G, Grissa R, Rentsch D, Zhao W, Gouveia T, Falgayrat A,Lin R, Fantini S, Battaglia C (2022)A polymerized-ionic-liquid-based polymer electrolyte with high oxidative stability for 4 and 5 V class solid-state lithium metal batteries. Adv Energy Mater 12(27):2200412. https://doi.org/10.1002/aenm.202200412.

  20. Jia M, Wen P, Wang Z, Zhao Y, Liu Y, Lin J, Chen M, Lin X (2021) Fluorinated bifunctional solid polymer electrolyte synthesized under visible light for stable lithium deposition and dendrite-free all-solid-state batteries. Adv Funct Mater 31(27):2101736. https://doi.org/10.1002/adfm.202101736

    Article  CAS  Google Scholar 

  21. Dubey BP, Sahoo A, Thangadurai V, Sharma Y (2022) Fabrication of ultra-thin, flexible, dendrite-free, robust and nanostructured solid electrolyte membranes for solid-state Li-batteries. J Mater Chem A 10(22):12196–12212. https://doi.org/10.1039/D2TA01412B

    Article  CAS  Google Scholar 

  22. Yang Z, Yuan H, Zhou C, Wu Y, Tang W, Sang S, Liu H (2020) Facile interfacial adhesion enabled LATP-based solid-state lithium metal battery. Chem Eng J 392:123650. https://doi.org/10.1016/j.cej.2019.123650

    Article  CAS  Google Scholar 

  23. Huang X, Wu J, Wang X, Tian Y, Zhang F, Yang M, Xu B, Wu B, Liu X, Li H (2021) In situ synthesis of a Li6.4La3Zr1.4Ta0.6O12/poly(vinylene carbonate) hybrid solid-state electrolyte with enhanced ionic conductivity and stability. ACS Appl Energy Mater 4(9):9368–9375. https://doi.org/10.1021/acsaem.1c01570

    Article  CAS  Google Scholar 

  24. Zhang X, Sun Y, Ma C, Guo N, Fan H, Liu J, Xie H (2022) Li6.4La3Zr1.4Ta0.6O12 reinforced polystyrene-poly(ethylene oxide)-poly(propylene oxide)-po-ly(ethylene oxide)-polystyrene pentablock copolymer-based composite solid electrolytes for solid-state lithium metal batteries. J Power Sources 542:231797. https://doi.org/10.1016/j.jpowsour.2022.231797

    Article  CAS  Google Scholar 

  25. Li W, Zhu X, Zhou N, Yang Y, Li R, Wang C, Fang Z, Ma X, Zhao W, Fu X, Yan W (2021) Helical polyurethane-initiated unique microphase separation architecture for highly efficient lithium transfer and battery performance of a poly(ethylene oxide)-based all-solid-state electrolyte. ACS Appl Energy Mater 4(5):4772–4785. https://doi.org/10.1021/acsaem.1c00358

    Article  CAS  Google Scholar 

  26. Zhou F, Liao H, Zhang Z (2020) Mechanical strong polymer cross-linking PVDF nanofiber electrolyte for lithium-ion batteries. Ionics 26(8):3893–3900. https://doi.org/10.1007/s11581-020-03549-x

    Article  CAS  Google Scholar 

  27. Yap YL, You AH, Teo LL (2019) Preparation and characterization studies of PMMA–PEO-blend solid polymer electrolytes with SiO2 filler and plasticizer for lithium ion battery. Ionics 25(7):3087–3098. https://doi.org/10.1007/s11581-019-02842-8

    Article  CAS  Google Scholar 

  28. Ma Y, Wan J, Yang Y, Ye Y, Xiao X, Boyle DT, Burke W, Huang Z, Chen H, Cui Y, Yu Z, Oyakhire ST, Cui Y (2022) Scalable, ultrathin, andhigh-temperature-resistant solid polymer electrolytes for energy-dense lithiummetal batteries. Adv Energy Mater 12(15):2103720. https://doi.org/10.1002/aenm.202103720

    Article  CAS  Google Scholar 

  29. Qi H, Ren Y, Guo S, Wang Y, Li S, Hu Y, Yan F (2020) High-voltage resistant ionic liquids for lithium-ion batteries. ACS Appl Mater Interfaces 12(1):591–600. https://doi.org/10.1021/acsami.9b16786

    Article  CAS  PubMed  Google Scholar 

  30. Huang M, Kan L, Zhao W, Wang Y, Xiong Y, Shan W, Lou Z (2021) Highly efficient and selective capture of TcO4- or ReO4- by imidazolium-basedionic liquid polymers. Chem Eng J 421:127763. https://doi.org/10.1016/j.cej.2020.127763

    Article  CAS  Google Scholar 

  31. Tang X, Lv S, Jiang K, Zhou G, Liu X (2022) Recent development of ionic liquid-based electrolytes in lithium-ion batteries. J Power Sources 542:231792. https://doi.org/10.1016/j.jpowsour.2022.231792

    Article  CAS  Google Scholar 

  32. Wang Z, Zhang F, Sun Y, Zheng L, Shen Y, Fu D, Li W, Pan A, Wang L, Xu J, Hu J, Wu X (2021) Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Adv Energy Mater 11(17):2003752. https://doi.org/10.1002/aenm.202003752

    Article  CAS  Google Scholar 

  33. Tsurumaki A, Kagimoto J, Ohno H (2011) Properties of polymer electrolytes composed of poly(ethylene oxide) and ionic liquids according to hard and soft acids and bases theory. Polym Adv Technol 22(8):1223–1228. https://doi.org/10.1002/pat.1931

    Article  CAS  Google Scholar 

  34. Sen S, Goodwin SE, Barbará PV, Rance GA, Wales D, Cameron JM, Sans V, Mamlouk M, Scott K, Walsh DA (2021) Gel-polymer electrolytes based on poly(ionic liquid)/ionic liquid networks. ACS Appl Polym Mater 3(1):200–208. https://doi.org/10.1021/acsapm.0c01042

    Article  CAS  Google Scholar 

  35. Li B, Zhao S, Zhu J, Ge S, Xing K, Sokolov AP, Saito T, Cao P-F (2021) Rational polymer design of stretchable poly(ionic liquid) membranes for dual applications. Macromolecules 54(2):896–905. https://doi.org/10.1021/acs.macromol.0c02335

    Article  CAS  Google Scholar 

  36. Wang Z, Zheng W, Sun W, Zhao L, Yuan W (2021) Covalent organic frameworks-enhanced ionic conductivity of polymeric ionic liquid-based ionic gel electrolyte for lithium metal battery. ACS Appl Energy Mater 4(3):2808–2819. https://doi.org/10.1021/acsaem.0c03229

    Article  CAS  Google Scholar 

  37. Zhou N, Wang Y, Zhou Y, Shen J, Zhou Y, Yang Y (2019) Star-shaped multi-arm polymeric ionic liquid based on tetraalkylammonium cation as high performance gel electrolyte for lithium metal batteries. Electrochim Acta 301:284–293. https://doi.org/10.1016/j.electacta.2019.01.143

    Article  CAS  Google Scholar 

  38. Zhang F, Sun Y, Wang Z, Fu D, Li J, Hu J, Xu J, Wu X (2020) Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries. ACS Appl Mater Interfaces 12(21):23774–23780. https://doi.org/10.1021/acsami.9b22945

    Article  CAS  PubMed  Google Scholar 

  39. Zhu X, Fang Z, Deng Q, Zhou Y, Fu X, Wu L, Yan W, Yang Y (2022) Poly(ionic liquid)@PEGMA block polymer initiated microphase separation architecture in poly(ethylene oxide)-based solid-state polymer electrolyte for flexible and self-healing lithium batteries. ACS Sustain Chem Eng 10(13):4173–4185. https://doi.org/10.1021/acssuschemeng.1c08306

    Article  CAS  Google Scholar 

  40. Guo C, Liu D, Wei J, Chen F (2021) Polymerized ionic networks solid electrolyte with high ionic conductivity for lithium batteries. Ind Eng Chem Res 60(12):4630–4638. https://doi.org/10.1021/acs.iecr.0c05519

    Article  CAS  Google Scholar 

  41. Sha Y, Yu T, Dong T, Wu X-l, Tao H, Zhang H (2021) In situ network electrolyte based on a functional polymerized ionic liquid with high conductivity toward lithium metal batteries. ACS Appl Energy Mater 4(12):14755–14765. https://doi.org/10.1021/acsaem.1c03443

    Article  CAS  Google Scholar 

  42. Qin H, Panzer MJ (2020) Zwitterionic copolymer-supported ionogel electrolytes featuring a sodium salt/ionic liquid solution. Chem Mater 32(18):7951–7957. https://doi.org/10.1021/acs.chemmater.0c02820

    Article  CAS  Google Scholar 

  43. Sun R, Agrawal M, Neyerlin KC, Snyder JD, Elabd YA (2022) Proton conducting sulfonated poly(ionic liquid) block copolymers. Macromolecules 55(15):6716–6729. https://doi.org/10.1021/acs.macromol.2c00468

    Article  CAS  Google Scholar 

  44. Gu Y, Yang L, Luo S, Zhao E, Saito N (2022) A non-flammable, flexible and UV-cured gel polymer electrolyte with crosslinked polymer network fordendrite-suppressing lithium metal batteries. Ionics 28(8):3743–3759. https://doi.org/10.1007/s11581-022-04621-4

    Article  CAS  Google Scholar 

  45. Tiyapiboonchaiya C, Pringle JM, MacFarlane DR, Forsyth M, Sun J (2003) Polyelectrolyte-in-ionic-liquid electrolytes. Macromol Chem Phys 204(17):2147–2154. https://doi.org/10.1002/macp.200350073

    Article  CAS  Google Scholar 

  46. Lu F, Li G, Yu Y, Gao X, Zheng L, Chen Z (2020) Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries. Chem Eng J 384:123237. https://doi.org/10.1016/j.cej.2019.123237

    Article  CAS  Google Scholar 

  47. Wang C, Chen P, Wang Y, Chen T, Liu M, Zhang M, Fu Y, Xu J, Fu J (2022) Synergistic cation-anion regulation of polysulfides by zwitterionic polymer binder for lithium-sulfur batteries. Adv Funct Mater 32(34):2204451. https://doi.org/10.1002/adfm.202204451

    Article  CAS  Google Scholar 

  48. Chen L, Fu J, Lu Q, Shi L, Li M, Dong L, Xu Y, Jia R (2019) Cross-linked polymeric ionic liquids ion gel electrolytes by in situ radical polymerization. Chem Eng J 378:122245. https://doi.org/10.1016/j.cej.2019.122245

    Article  CAS  Google Scholar 

  49. Chen H, Tu H, Hu C, Liu Y, Dong D, Sun Y, Dai Y, Wang S, Qian H, Lin Z, Chen L (2018) Cationic covalent organic framework nanosheets for fast Li-ion conduction. J Am Chem Soc 140(3):896–899. https://doi.org/10.1021/jacs.7b12292

    Article  CAS  PubMed  Google Scholar 

  50. Nava DP, Guzmán G, Vazquez-Arenas J, Cardoso J, Gomez B, Gonzalez I (2016) An experimental and theoretical correlation to account for the effect of LiPF6 concentration on the ionic conductivity of poly(poly (ethylene glycol) methacrylate). Solid State Ion 290:98–107. https://doi.org/10.1016/j.ssi.2016.03.020

    Article  CAS  Google Scholar 

  51. Zamory J, Giffin GA, Jeremias S, Castiglione F, Mele A, Paillard E, Passerini S (2016) Influence of oligo(ethylene oxide) substituents on pyrrolidinium-based ionic liquid properties, Li+ solvation and transport. Phys Chem Chem Phys 18(31):21539–21547. https://doi.org/10.1039/C6CP02092E

    Article  CAS  Google Scholar 

  52. Wang Z, Guo Q, Jiang R, Deng S, Ma J, Cui P, Yao X (2022) Porous poly(vinylidene fluoride) supported three-dimensional poly(ethylene glycol) thin solid polymer electrolyte for flexible high temperature all-solid-state lithium metal batteries. Chem Eng J 435:135106. https://doi.org/10.1016/j.cej.2022.135106

    Article  CAS  Google Scholar 

  53. Liu X, Liu J, Lin B, Chu F, Ren Y (2022) PVDF-HFP-based composite electrolyte membranes having high conductivity and lithium-ion transference number for lithium metal batteries. ACS Appl Energy Mater 5(1):1031–1040. https://doi.org/10.1021/acsaem.1c03417

    Article  CAS  Google Scholar 

  54. Chen Z, Steinle D, Nguyen HD, Kim JK, Mayer A, Shi JL, Paillard E, Iojoiu C, Passerini S, Bresser D (2020) High-energy lithium batteries based on single-ion conducting polymer electrolytes and Li[Ni0.8Co0.1Mn0.1]O2 cathodes. Nano Energy 77:105129. https://doi.org/10.1016/j.nanoen.2020.105129

    Article  CAS  Google Scholar 

  55. Liang L, Chen X, Yuan W, Chen H, Liao H, Zhang Y (2021) Highly conductive, flexible, and nonflammable double-network poly(ionic liquid)-based ionogel electrolyte for flexible lithium-ion batteries. ACS Appl Mater Interfaces 13(21):25410–25420. https://doi.org/10.1021/acsami.1c06077

    Article  CAS  PubMed  Google Scholar 

  56. Zhang J, Wang S, Han D, Xiao M, Sun L, Meng Y (2020) Lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl) imide based single-ion polymer electrolyte with superior battery performance. Energy Stor Mater 24:579–587. https://doi.org/10.1016/j.ensm.2019.06.029

    Article  CAS  Google Scholar 

  57. Li Y, Sun Z, Shi L, Lu S, Sun Z, Shi Y, Wu H, Zhang Y, Ding S (2019) Poly(ionic liquid)-polyethylene oxide semi-interpenetrating polymer network solid electrolyte for safe lithium metal batteries. Chem Eng J 375:121925. https://doi.org/10.1016/j.cej.2019.121925

    Article  CAS  Google Scholar 

  58. Hu Z, Chen J, Guo Y, Zhu J, Qu X, Niu W, Liu X (2020) Fire-resistant, high-performance gel polymer electrolytes derived from poly(ionic liquid)/P(VDF-HFP) composite membranes for lithium ion batteries. J Membr Sci 599:117827. https://doi.org/10.1016/j.memsci.2020.117827

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No.51973022), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX223037), and Qing Lan project of Jiangsu province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bencai Lin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1.

(DOC 7836 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xu, Y., Xu, F. et al. Zwitterionic poly(ionic liquids)-based polymer electrolytes for Lithium-ion batteries applications. Ionics 29, 2249–2259 (2023). https://doi.org/10.1007/s11581-023-04978-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04978-0

Keywords

Navigation