Skip to main content
Log in

Fabrication of bifunctional multiwalled carbon nanotubes@palygorskite nanofiber nanocomposite for electrochemical determination of niclosamide

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, we reported a novel niclosamide (NA) electrochemical sensor based on the multifunctional nanocomposite of palygorskite (Pal) nanofibers and bifunctional multiwalled carbon nanotubes (BMCN) with graphitization and carboxylation. For the BMCN@Pal nanocomposite, BMCN with one-dimensional nanotube structure possessed excellent electrical conductivity and good dispersion performance due to the graphitization and carboxylation; Pal with fibrous structure possessed good electrocatalytic activity due to the high absorption capability, large specific surface area, and prominent stability. Moreover, BMCN with interconnected carbon conductive network promoted the uniform distribution of Pal nanofibers and compensated for the poor electrical conductivity of Pal nanofibers. Thanks to the functional combination of BMCN and Pal, the BMCN@Pal/GCE sensor exhibited good NA electrochemical detection performance with low limit of detection of 7.88 nM in linear NA concentration of 0.01–10 μM. The BMCN@Pal/GCE sensor exhibited good repeatability and reproducibility. In addition, a good practical feasibility can be achieved at the BMCN@Pal/GCE sensor for the detection of NA in tap water and pond water samples (recovery rate: 96.2–100.3%, relative standard deviation: 2.53–4.97).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data are available on request from the authors.

References

  1. Kadri H, Lambourne OA, Mehellou Y (2018) Niclosamide, a drug with many (re)purposes. Chem Med Chem 13:1088–1091

    CAS  PubMed  Google Scholar 

  2. Chen W, Mook RA Jr, Premont RT, Wang J (2018) Niclosamide: beyond an antihelminthic drug. Cell Signal 41:89–96

    CAS  PubMed  Google Scholar 

  3. Wang C, Zhong J, Zhang G, Hu J (2021) High-efficient determination of niclosamide in tablet based on multiple-walled carbon nanotubes/cyclodextrins composite modified glassy carbon electrode. Int J Electrochem Sci 16:210217

    CAS  Google Scholar 

  4. Liu Y, Wang F, Ai X, Wang Z, Yang Q, Dong J, Xu N (2018) Residue depletion and risk assessment of niclosamide in three species of freshwater fish. Food Addit Contam Part A 35:1497–1507

    CAS  Google Scholar 

  5. Doran G, Stevens MM (2014) Simultaneous determination of niclosamide and its degradates in water by LC-MS/MS. Anal Methods 6:6871–6877

    CAS  Google Scholar 

  6. Schreier TM, Dawson VK, Choi Y, Spanjers NJ, Boogaard MA (2000) Determination of niclosamide residues in rainbow trout (Oncorhynchus mykiss) and channel catfish (Ictalurus punctatus) fillet tissue by high-performance liquid chromatography. J Agric Food Chem 48:2212–2215

    CAS  PubMed  Google Scholar 

  7. Cholifah S, Farina Kartinasari W, Indrayanto G (2007) Simultaneous HPLC determination of levamisole hydrochloride and anhydrous niclosamide in veterinary powders, and its validation. J Liq Chromatogr R T 31:281–291

    Google Scholar 

  8. Zhong Z, Wang J, Jiang S, Li M, Lin J, Pan J, Tao X, Xie A, Luo S (2022) Novel electrochemical sensor based on Fe3O4-ZrO2-graphene oxide for determination of dopamine. Ionics 28:4853–4865

    CAS  Google Scholar 

  9. Pallam G S, Sam S, S S, Kumar K G (2022) A sensitive voltammetric sensor for the simultaneous determination of norepinephrine and its co-transmitter octopamine using a biopolymer modified glassy carbon electrode. Ionics 29:819-831

  10. Moustafa A, El-Kamel RS, Abdelgawad S, Fekry AM, Shehata M (2022) Electrochemical determination of vitamin B6 (pyridoxine) by reformed carbon paste electrode with iron oxide nanoparticles. Ionics 28:4471–4484

    CAS  Google Scholar 

  11. Morais VS, Silva LRG, Boasquevisque LM, Ferreira RQ, Lelis MFF, Freitas MBJG (2022) Electrochemical sensor prepared with materials from spent Zn-MnO2 batteries for copper (II) determination in alcoholic beverages. Ionics 28:5547–5559

    CAS  Google Scholar 

  12. Peng R, Chen W, Zhou Q (2021) Electrochemical sensor for chloramphenicol based on copper nanodendrites and carbon nanotubes. Ionics 28:451–462

    Google Scholar 

  13. Zhao H, Zhu G, Li F, Liu Y, Guo M, Zhou L, Liu R, Komarneni S (2023) 3D interconnected honeycomb-like ginkgo nut-derived porous carbon decorated with β-cyclodextrin for ultrasensitive detection of methyl parathion. Sensor Actuat B: Chem 380:133309

    CAS  Google Scholar 

  14. Diouf A, Moufid M, Bouyahya D, Osterlund L, El Bari N, Bouchikhi B (2020) An electrochemical sensor based on chitosan capped with gold nanoparticles combined with a voltammetric electronic tongue for quantitative aspirin detection in human physiological fluids and tablets. Mater Sci Eng C 110:110665

    CAS  Google Scholar 

  15. Mostafazadeh R, Ghaffarinejad A, Tajabadi F (2022) A caffeic acid electrochemical sensor amplified with GNR/CoFe2O4@NiO and 1-Ethyl-3-methylimidazolium acetate; a new perspective for food analysis. Food Chem Toxicol 167:113312

    CAS  PubMed  Google Scholar 

  16. Theerthagiri S, Rajkannu P, Senthil Kumar P, Peethambaram P, Ayyavu C, Rasu R, Kannaiyan D (2022) Electrochemical sensing of copper (II) ion in water using bi-metal oxide framework modified glassy carbon electrode. Food Chem Toxicol 167:113313

    CAS  PubMed  Google Scholar 

  17. Goda ES, Gab-Allah MA, Singu BS, Yoon KR (2019) Halloysite nanotubes based electrochemical sensors: a review. Microchem J 147:1083–1096

    CAS  Google Scholar 

  18. Yan P, Zhang S, Zhang C, Liu Z (2019) Palygorskite modified with N-doped carbon for sensitive determination of lead (II) by differential pulse anodic stripping voltammetry. Microchim Acta 186:706

    Google Scholar 

  19. Kong Y, Chen X, Wang W, Chen Z (2011) A novel palygorskite-modified carbon paste amperometric sensor for catechol determination. Anal Chim Acta 688:203–207

    CAS  PubMed  Google Scholar 

  20. Wu Y, Lei W, Xia M, Wang F, Li C, Zhang C, Hao Q, Zhang Y (2018) Simultaneous electrochemical sensing of hydroquinone and catechol using nanocomposite based on palygorskite and nitrogen doped graphene. Appl Clay Sci 162:38–45

    CAS  Google Scholar 

  21. Luo S, Chen Y, Zhou M, Yao C, Xi H, Kong Y, Deng L (2013) Palygorskite-poly(o-phenylenediamine) nanocomposite: an enhanced electrochemical platform for glucose biosensing. Appl Clay Sci 86:59–63

    CAS  Google Scholar 

  22. Zhang Z, Yao Y, Xu J, Wen Y, Zhang J, Ding W (2017) Nanohybrid sensor based on carboxyl functionalized graphene dispersed palygorskite for voltammetric determination of niclosamide. Appl Clay Sci 143:57–66

    CAS  Google Scholar 

  23. Arduini F, Cinti S, Mazzaracchio V, Scognamiglio V, Amine A, Moscone D (2020) Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio) sensor design. Biosens Bioelectron 156:112033

    CAS  PubMed  Google Scholar 

  24. Bhat VS, Supriya S, Hegde G (2020) Review-biomass derived carbon materials for electrochemical sensors. J ElectrochemSoc 167:037526

    CAS  Google Scholar 

  25. Schroeder V, Savagatrup S, He M, Lin S, Swager TM (2018) Carbon nanotube chemical sensors. Chem Rev 119:599–663

    PubMed  PubMed Central  Google Scholar 

  26. Naga A, Mitrab A, Mukhopadhyay SC (2018) Graphene and its sensor-based applications: a review. Sensor Actuat A: Phys 270:177–194

    Google Scholar 

  27. Alam AU, Qin Y, Howlader MMR, Hu N-X, Deen MJ (2018) Electrochemical sensing of acetaminophen using multi-walled carbon nanotube and β-cyclodextrin. Sensor Actuat B: Chem 254:896–909

    CAS  Google Scholar 

  28. Guo M, Zhu G, Liu Y, Zhao M, Shen Y, Zhou Y, Liu R, Zhao H (2022) Functionalised multi-walled carbon nanotubes-based electrochemical sensor: synergistic effect of graphitisation and carboxylation on detection performance of methyl parathion. Mater Res Innov 26:324–330

    CAS  Google Scholar 

  29. Zhao H, Ma H, Li X, Liu B, Liu R, Komarneni S (2021) Nanocomposite of halloysite nanotubes/multi-walled carbon nanotubes for methyl parathion electrochemical sensor application. Appl Clay Sci 200:105907

    CAS  Google Scholar 

  30. Heidarimoghadam R, Farmany A (2016) Rapid determination of furosemide in drug and blood plasma of wrestlers by a carboxyl-MWCNT sensor. Mater Sci Eng C 58:1242–1245

    CAS  Google Scholar 

  31. Xue Y, Zheng S, Sun Z, Zhang Y, Jin W (2017) Alkaline electrochemical advanced oxidation process for chromium oxidation at graphitized multi-walled carbon nanotubes. Chemosphere 183:156–163

    CAS  PubMed  Google Scholar 

  32. Zhang S, Shao Y, Yin G, Lin Y (2011) Self-assembly of Pt nanoparticles on highly graphitized carbon nanotubes as an excellent oxygen-reduction catalyst. Appl Catal B: Environ 102:372–377

    Google Scholar 

  33. Wen Y, Chang J, Xu L, Liao X, Bai L, Lan Y, Li M (2017) Simultaneous analysis of uric acid, xanthine and hypoxanthine using voltammetric sensor based on nanocomposite of palygorskite and nitrogen doped graphene. J Electroanal Chem 805:159–170

    CAS  Google Scholar 

  34. Zhu M, Shao Q, Pi Y, Guo J, Huang B, Qian Y, Huang X (2017) Ultrathin vein-like iridium-tin nanowires with abundant oxidized tin as high-performance ethanol oxidation electrocatalysts. Small 13:1701295

    Google Scholar 

  35. Zhu T, Ding J, Shao Q, Qian Y, Huang X (2019) P, Se-codoped MoS2 nanosheets as accelerated electrocatalysts for hydrogen evolution. Chem Cat Chem 11:689–692

    CAS  Google Scholar 

  36. Chen J, Lin C, Zhang M, Jin T, Qian Y (2020) Constructing nitrogen, selenium co-doped graphene aerogel electrode materials for synergistically enhanced capacitive performance. Chem Electro Chem 7:3311–3318

    CAS  Google Scholar 

  37. Ren G, Li Y, Chen Q, Qian Y, Zheng J, Zhu Y, Teng C (2018) Sepia-derived N, P co-doped porous carbon spheres as oxygen reduction reaction electrocatalyst and supercapacitor. ACS Sustainable Chem Eng 6:16032–16038

    CAS  Google Scholar 

  38. Chen YS, Hsiue GH (2013) Directing neural differentiation of mesenchymal stem cells by carboxylated multiwalled carbon nanotubes. Biomaterials 34:4936–4944

    CAS  PubMed  Google Scholar 

  39. Chen Z, Pierre D, He H, Tan S, Pham-Huy C, Hong H, Huang J (2011) Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes. Int J Pharm 405:153–161

    CAS  PubMed  Google Scholar 

  40. Li J, Kuang D, Feng Y, Zhang F, Liu M (2010) Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes. Microchim Acta 172:379–386

    Google Scholar 

  41. Egbosiuba TC, Abdulkareem AS, Kovo AS, Afolabi EA, Tijani JO, Roos WD (2020) Enhanced adsorption of As(V) and Mn (VII) from industrial wastewater using multi-walled carbon nanotubes and carboxylated multi-walled carbon nanotubes. Chemosphere 254:126780

    CAS  PubMed  Google Scholar 

  42. Guo M, Wu T, Zhu G, Liu Y, Zhao M, Shen Y, Zhou Y, Chen L, Guo X, Wang Q, Liu R, Zhao H (2022) Highly sensitive determination of niclosamide based on the graphitized and carboxylated multi-walled carbon nanotubes modified glassy carbon electrode. Int J Electrochem Sci 17:220772

    CAS  Google Scholar 

  43. Brahma B, Sen S, Sarkar P, Sarkar U (2021) Interference-free electrocatalysis of p-chloro meta xylenol (PCMX) on uniquely designed optimized polymeric nanohybrid of P (EDOT-co-OPD) and fMWCNT modified glassy carbon electrode. Anal Chim Acta 1168:338595

    CAS  PubMed  Google Scholar 

  44. Zhao H, Chang Y, Liu R, Li B, Li F, Zhang F, Shi M, Zhou L, Li X (2021) Facile synthesis of Vulcan XC-72 nanoparticles-decorated halloysite nanotubes for the highly sensitive electrochemical determination of niclosamide. Food Chem 343:128484

    CAS  PubMed  Google Scholar 

  45. Alemu H, Wagana P, Tseki PF (2002) Voltammetric determination of niclosamide at a glassy carbon electrode this paper was submitted for inclusion in the new directions in electroanalysis guest editor issue of the analyst. Analyst 127:129–134

    CAS  PubMed  Google Scholar 

  46. Dede E, Sağlam Ö, Dilgin Y (2014) Sensitive voltammetric determination of niclosamide at a disposable pencil graphite electrode. Electrochim Acta 127:20–26

    CAS  Google Scholar 

  47. Mehretie S, Admassie S, Tessema M, Solomon T (2012) Electrochemical study of niclosamide at poly(3,4-ethylenedioxythiophene) modified glassy carbon electrode. Sensor Actuat B: Chem 168:97–102

    CAS  Google Scholar 

Download references

Funding

This work was supported by the University Students’ Innovation and Pioneering Project (No. 202210467017) and the Postdoctoral Research Project of Henan Province (No. 202102098).

Author information

Authors and Affiliations

Authors

Contributions

X.W. and M.Z. conceived and designed the experiment. X.W., M.Z., and F.L. analyzed the data and wrote the manuscript. X.W., M.Z., F.L., and G.Z. conducted experiments or provided materials and put forward valuable suggestions. HZ supervised the work, and all authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fang Li or Hongyuan Zhao.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, X., Zhao, M., Li, F. et al. Fabrication of bifunctional multiwalled carbon nanotubes@palygorskite nanofiber nanocomposite for electrochemical determination of niclosamide. Ionics 29, 3373–3384 (2023). https://doi.org/10.1007/s11581-023-04964-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04964-6

Keywords

Navigation