Skip to main content

Advertisement

Log in

Ferric hydroxide/NiCo-MOF composite materials as efficient electrocatalysts for the oxygen evolution reaction

  • Progress Report
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Due to the depletion of renewable energy sources, clean hydrogen energy has become one of the most popular new energy sources. One of the means to improve hydrogen production efficiency is to increase the rate of oxygen evolution of electrolytic water. Here, we prepared a metal–organic framework (MOF) through a simple hydrothermal reaction. Fe(OH)3 was prepared on the surface of NiCo-MOF by a rapid phenol-iron reaction using the hydroxyl site of the MOF. The obtained Fe(OH)3/NiCo-MOF has excellent oxygen evolution performance, and it is noteworthy that the electrocatalytic activity of NiCo-MOF is significantly improved by the introduction to Fe atoms. The Tafel slope of Fe(OH)3/NiCo-MOF (45 mV Dec−1) is about 70% lower than that of NiCo-MOF(148 mV Dec−1). This work provides a new strategy for the design and preparation of excellent MOF composite materials and thus provides new ideas and approaches for the preparation of other energy conversion and storage materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2

Similar content being viewed by others

Data Availability

The date that support the findings of this study are available from the corresponding auther upon reasonable request.

References

  1. Zhang H, Nai J, Yu L, Lou XWD (2017) Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1:77–107

    Article  CAS  Google Scholar 

  2. Roy C, Sebok B, Scott SB, Fiordaliso EM, Sorensen JE, Bodin A, Trimarco DB, Damsgaard CD, Vesborg PCK, Hansen O, Stephens IEL, Kibsgaard J, Chorkendorff I (2018) Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nat Catal 1:820–829

    Article  CAS  Google Scholar 

  3. Zhu DD, Qiao M, Liu JL, Tao TA, Guo CX (2020) Engineering pristine 2D metal-organic framework nanosheets for electrocatalysis. J Matrrials Chem A 8:8143–8170

    Article  CAS  Google Scholar 

  4. Wang X, Li W, Xiong D, Petrovykh DY, Liu L (2016) Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting advanced functional materials. Adv Funct Mater 26:4067–4077

    Article  CAS  Google Scholar 

  5. Xu X, Sun Y, Qiao W, Zhang X, Chen X, Song X, Wu L, Zhong W, Du Y (2017) 3D MoS2-graphene hybrid aerogels as catalyst for enhanced efficient hydrogen evolution. Appl Surf Sci 396:1520–1527

    Article  CAS  Google Scholar 

  6. Cai GR, Zhang W, Jiao L, Yu SH, Jiang HL (2017) Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. CHEM 2:791–802

    Article  CAS  Google Scholar 

  7. Cai LJ, Lin ZY, Wang MY, Pan F, Chen JW, Wang Y, Shen XP, Chai Y (2017) Improved interfacial H2O supply by surface hydroxyl groups for enhanced alkaline hydrogen evolution. J MATER CHEM A 5:24091–24097

    Article  CAS  Google Scholar 

  8. Cai Z, Zhou DJ, Wang MY, Bak SM, Wu YS, Wu ZS, Tian Y, Xiong XY, Li YP, Liu W, Siahrostami S, Kuang Y, Yang XQ, Duan HH, Feng ZX, Wang HL, Sun XM (2018) Introducing Fe2+ into nickel-iron layered double hydroxide: local structure modulated water oxidation activity. Angew Chem Int Edit 57:9392–9396

    Article  CAS  Google Scholar 

  9. Tian L, Chen H, Lu X, Liu D, Cheng W, Liu Y, Li J, Li Z (2022) Local photothermal and photoelectric effect synergistically boost hollow CeO2/CoS2 heterostructure electrocatalytic oxygen evolution reaction. J Colloid Interf Sci 628:663–672

    Article  CAS  Google Scholar 

  10. Chen YZ, Zhang R, Jiao L, Jiang HL (2018) Metal-organic framework-derived porous materials for catalysis, Coordin. Chem Rev 362:1–23

    CAS  Google Scholar 

  11. Tang S, Zhou Y, Lu X, Chen Z, Huang Z, Li Z, Tian L (2022) Surface/interface engineering for fabricating hierarchical Ir doped NiMoO4 covered by CoMn layered double hydroxide toward oxygen evolution reaction. J Alloy Compd 924:166415

    Article  CAS  Google Scholar 

  12. Bhadu GR, Parmar B, Patel P, Paul A, Chaudhari JC, Srivastava DN, Suresh E (2020) Co@N-doped carbon nanomaterial derived by simple pyrolysis of mixed-ligand MOF as an active and stable oxygen evolution electrocatalyst. Appl Surf Sci 529. https://doi.org/10.1016/j.apsusc.2020.147081

  13. Zhao MT, Yuan K, Wang Y, Li GD, Guo J, Gu L, Hu WP, Zhao HJ, Tang ZY (2016) Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nat 539:76–80

    Article  CAS  Google Scholar 

  14. Zhao SN, Song XZ, Song SY, Zhang HJ (2017) Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors, Coordin. Chem Rev 337:80–96

    CAS  Google Scholar 

  15. Zhao XX, Yang H, Jing P, Shi W, Yang GM, Cheng P (2017) A metal-organic framework approach toward highly nitrogen-doped graphitic carbon as a metal-free photocatalyst for hydrogen evolution. Small 13(9). https://doi.org/10.1002/smll.201603279

  16. Li XP, Liu J, Zhao YH, Zhang HJ, Du FP, Lin C, Zhao TJ, Sun YH (2015) Significance of surface trivalent Manganese in the electrocatalytic activity of water oxidation in undoped and doped MnO2 nanowires. ChemCatChem 7:1848–1856

    Article  CAS  Google Scholar 

  17. Li YL, Jia BM, Chen BY, Liu QL, Cai MK, Xue ZQ, Fan YN, Wang HP, Su CY, Li GQ (2018) MOF-derived Mn doped porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting. Dalton T 47:14679–14685

    Article  CAS  Google Scholar 

  18. Liang ZB, Qu C, Xia DG, Zou RQ, Xu Q (2018) Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew Chem Int Edit 57:9604–9633

    Article  CAS  Google Scholar 

  19. Liberman I, Shimoni R, Ifraemov R, Rozenberg I, Singh C, Hod I (2020) Active-site modulation in an Fe-porphyrin-based metal-organic framework through ligand axial coordination: accelerating electrocatalysis and charge-transport kinetics. J Am Chem Soc 142:1933–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu XF, Liao PQ, Wang JW, Wu JX, Chen XW, He CT, Zhang JP, Li GR, Chen XM (2016) An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution. J Am Chem Soc 138:8336–8339

    Article  CAS  PubMed  Google Scholar 

  21. Lu XY, Zhao CA (2015) Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat Commun 6:6616. https://doi.org/10.1038/ncomms7616

  22. Mahmood A, Guo WH, Tabassum H, Zou RQ (2016) Metal-organic framework-based nanomaterials for electrocatalysis. Adv Energy Mater 6(17):1600423. https://doi.org/10.1002/aenm.201600423

  23. Han MY, Zhang XW, Gao HY, Chen SY, Cheng P, Wang P, Zhao ZY, Dang R, Wang G (2021) In situ semi-sacrificial template-assisted growth of ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Chem Eng J 426:131348. https://doi.org/10.1016/j.cej.2021.131348

  24. Li LD, Chen J, Wang ST, Huang Y, Cao DP (2022) MOF-derived CoN/CoFe/NC bifunctional electrocatalysts for zinc-air batteries. Appl Surf Sci 582:152375. https://doi.org/10.1016/j.apsusc.2021.152375

  25. Pan YD, Zhang JS, Zhao ZL, Shi L, Wu BK, Zeng L (2021) Iron-doped metal-organic framework with enhanced oxygen evolution reaction activity for overall water splitting. Int J Hydrogen Energ 46:34565–34573

    Article  CAS  Google Scholar 

  26. He SQ, He SY, Gao F, Bo X, Wang QX, Chen XJ, Duan JJ, Zhao C (2018) Ni2P@carbon core-shell nanorod array derived from ZIF-67-Ni: effect of phosphorization temperature on morphology, structure and hydrogen evolution reaction performance. Appl Surf Sci 457:933–941

    Article  CAS  Google Scholar 

  27. Hou CC, Xu Q (2019) Metal-organic frameworks for energy. Adv Energy Mater 9(23):1801307. https://doi.org/10.1002/aenm.201801307

  28. Wang HF, Chen LY, Pang H, Kaskel S, Xu Q (2020) MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev 49:1414–1448

    Article  CAS  PubMed  Google Scholar 

  29. Song M, Lu X, Du M, Chen Z, Zhu C, Xu H, Cheng W, Zhuang W, Li Z, Tian L (2022) Electronic and architecture engineering of hammer-shaped Ir–NiMoO4-ZIF for effective oxygen evolution. CrystEngComm 24:5995–6000

    Article  CAS  Google Scholar 

  30. Li W, Min CG, Tan F, Li ZP, Zhang BS, Si R, Xu ML, Liu WP, Zhou LX, Wei QM, Zhang YZ, Yang XK (2019) Bottom-up construction of active sites in a Cu-N-4-C catalyst for highly efficient oxygen reduction reaction. ACS Nano 13:3177–3187

    Article  CAS  PubMed  Google Scholar 

  31. Yang XB, Chen J, Yang WS, Lin H, Luo XT (2019) Influence of Zn and Co co-doping on oxygen evolution reaction electrocatalysis at MOF-derived N-doped carbon electrodes. Inorg Chem Front 6:3475–3481

    Article  CAS  Google Scholar 

  32. Wei XD, Li N, Liu N (2019) Ultrathin NiFeZn-MOF nanosheets containing few metal oxide nanoparticles grown on nickel foam for efficient oxygen evolution reaction of electrocatalytic water splitting. Electrochim Acta 318:957–965

    Article  CAS  Google Scholar 

  33. Pan CC, Liu ZC, Huang MH (2020) 2D iron-doped nickel MOF nanosheets grown on nickel foam for highly efficient oxygen evolution reaction. Appl Surf Sci 529:147201. https://doi.org/10.1016/j.apsusc.2020.147201

  34. Li ZX, Zhang X, Kang YK, Yu CC, Wen YY, Hu ML, Meng D, Song WY, Yang Y (2021) Interface engineering of Co-LDH@MOF heterojunction in highly stable and efficient oxygen evolution reaction. Adv Sci 8(2):2002631. https://doi.org/10.1002/advs.202002631

  35. Schneider C, Ukaj D, Koerver R, Talin AA, Kieslich G, Pujari SP, Zuilhof H, Janek J, Allendorf MD, Fischer RA (2018) High electrical conductivity and high porosity in a Guest@MOF material: evidence of TCNQ ordering within Cu3BTC2 micropores. Chem Sci 9:7405–7412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao Z, Yu ZW, Liu FQ, Yang C, Yuan YH, Yu Y, Luo F (2019) Stable iron hydroxide nanosheets@cobalt-metal–organic–framework heterostructure for efficient electrocatalytic oxygen evolution. Chemsuschem 12:4623–4628

    Article  CAS  PubMed  Google Scholar 

  37. Huo JM, Wang Y, Yan LT, Xue YY, Li SN, Hu MC, Jiang YC, Zhai QG (2020) In situsemi-transformation from heterometallic MOFs to Fe-Ni LDH/MOF hierarchical architectures for boosted oxygen evolution reaction. Nanoscale 12:14514–14523

    Article  CAS  PubMed  Google Scholar 

  38. Tripathy RK, Samantara AK, Behera JN (2019) A cobalt metal-organic framework (Co-MOF): a bi-functional electro active material for the oxygen evolution and reduction reaction. Dalton Trans 48:10557–10564

    Article  PubMed  Google Scholar 

  39. Xu HJ, Yang YW, Yang XX, Cao J, Liu WS, Tang Y (2019) Stringing MOF-derived nanocages: a strategy for the enhanced oxygen evolution reaction. J Mater Chem A 7:8284–8291

    Article  CAS  Google Scholar 

  40. Aiyappa HB, Wilde P, Quast T, Masa J, Andronescu C, Chen YT, Muhler M, Fischer RA, Schuhmann W (2019) Oxygen evolution electrocatalysis of a single MOF-derived composite nanoparticle on the tip of a nanoelectrode. Angew Chemie-Int Ed 58:8927–8931

    Article  CAS  Google Scholar 

  41. Han L, Xu J, Huang Y, Dong WJ, Jia XL (2021) High-performance electrocatalyst of vanadium-iron bimetal organic framework arrays on nickel foam for overall water splitting. Chin Chem Lett 32:2263–2268

    Article  CAS  Google Scholar 

  42. Rinawati M, Wang YX, Chen KY, Yeh MH (2021) Designing a spontaneously deriving NiFe-LDH from bimetallic MOF-74 as an electrocatalyst for oxygen evolution reaction in alkaline solution. Chem Eng J 423:130204. https://doi.org/10.1016/j.cej.2021.130204

  43. Gao Z, Lai YL, Zhang LX, Lin YZ, Xiao LH, Luo YD, Luo F (2021) Synthesis, characterization, and electrocatalytic activity exploration of MOF-74: a research-style laboratory experiment. J Chem Educ 98:3341–3347

    Article  CAS  Google Scholar 

  44. Lin X, Li X, Li F, Fang Y, Tian M, An X, Fu Y, Jin J, Ma J (2016) Precious-metal-free Co–Fe–Ox coupled nitrogen-enriched porous carbon nanosheets derived from Schiff-base porous polymers as superior electrocatalysts for the oxygen evolution reaction. J Mater Chem A 4:6505–6512

    Article  CAS  Google Scholar 

  45. Wang H, Yin F, Li G, Chen B, Wang Z (2014) Preparation, characterization and bifunctional catalytic properties of MOF(Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte. Int J Hydrogen Energ 39:16179–16186

    Article  CAS  Google Scholar 

  46. Song G, Wang Z, Wang L, Li G, Huang M, Yin F (2014) Preparation of MOF(Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte. Chinese J Catal 35:185–195

    Article  CAS  Google Scholar 

  47. Che Q, Li Q, Tan Y, Chen X, Xu X, Chen Y (2019) One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Appl Catal: B Environ 246:337–348

    Article  CAS  Google Scholar 

  48. Strauss I, Mundstock A, Hinrichs D, Himstedt R, Knebel A, Reinhardt C, Dorfs D, Caro J (2018) Frontispiece: the interaction of guest molecules with Co-MOF-74: a Vis/NIR and Raman approach. Angew Chemie Int Ed 57:7434–7439

    Article  CAS  Google Scholar 

  49. Yang H, Dai G, Chen Z, Wu J, Huang H, Liu Y, Shao M, Kang Z (2021) Pseudo-periodically coupling Ni O lattice with Ce O lattice in ultrathin heteronanowire arrays for efficient water oxidation. Small 17:2101727

    Article  CAS  Google Scholar 

  50. Wu D, Wei Y, Ren X, Ji X, Liu Y, Guo X, Liu Z, Asiri AM, Wei Q, Sun X (2018) Co(OH)2 Nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis. Adv Mater 30:1705366

    Article  Google Scholar 

  51. Li WX, Fang W, Chen W, Dinh K, Ren H, Zhao L, Liu CT, Yan QY (2020) Bimetal-MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction. J Mater Chem A 8:3658–3666

    Article  CAS  Google Scholar 

  52. Chen YZ, Liaw BJ, Chen HC (2006) Selective oxidation of CO in excess hydrogen over CuO/CexZr1-xO2CuO/CexZr1-xO2 catalysts. Int J Hydrogen Energ 31:427–435

    Article  Google Scholar 

  53. Chen HC, Jiang JJ, Zhang L, Wan HZ, Qi T, Xia DD (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5:8879–8883

    Article  CAS  PubMed  Google Scholar 

  54. Wang X, Chai LL, Ding JY, Zhong L, Du YJ, Li TT, Hu Y, Qian JJ, Huang SM (2019) Chemical and morphological transformation of MOF-derived bimetallic phosphide for efficient oxygen evolution. Nano Energy 62:745–753

    Article  CAS  Google Scholar 

  55. Guo MC, Li Y, Zhou LX, Zheng QJ, Jie WJ, Xie FY, Xu CG, Lin DM (2019) Hierarchically structured bimetallic electrocatalyst synthesized via template-directed fabrication MOF arrays for high-efficiency oxygen evolution reaction. Electrochim Acta 298:525–532

    Article  CAS  Google Scholar 

  56. Li GL, Zhang XB, Zhang H, Liao CY, Jiang GB (2019) Bottom-up MOF-intermediated synthesis of 3D hierarchical flower-like cobalt-based homobimetallic phophide composed of ultrathin nanosheets for highly efficient oxygen evolution reaction. Appl Catal B-Environ 249:147–154

    Article  CAS  Google Scholar 

  57. Jia XX, Wang MH, Liu G, Wang Y, Yang JF, Li JP (2019) Mixed-metal MOF-derived Co-doped Ni3C/Ni NPs embedded in carbon matrix as an efficient electrocatalyst for oxygen evolution reaction. Int J Hydrogen Energ 44:24572–24579

    Article  CAS  Google Scholar 

  58. Liu H, Zha M, Liu Z, Tian JQ, Hu GZ, Feng LG (2020) Synergistically boosting the oxygen evolution reaction of an Fe-MOF via Ni doping and fluorination. Chem Commun 56:7889–7892

    Article  CAS  Google Scholar 

  59. Louie MW, Bell AT (2013) An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc 135:12329–12337

    Article  CAS  PubMed  Google Scholar 

  60. Feng J-X, Ye S-H, Xu H, Tong Y-X, Li G-R (2016) Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Adv Mater 28:4698–4703

    Article  CAS  PubMed  Google Scholar 

  61. Xie S, Li F, Xu S, Li J, Zeng W (2019) Cobalt/iron bimetal-organic frameworks as efficient electrocatalysts for the oxygen evolution reaction. Chinese J Catal 40:1205–1211

    Article  CAS  Google Scholar 

  62. Favaro M, Drisdell WS, Marcus MA, Gregoire JM, Crumlin EJ, Haber JA, Yano AJ (2017) An Operando investigation of (Ni–Fe–Co–Ce)Ox system as highly efficient electrocatalyst for oxygen evolution reaction. ACS Catal 7:1248–1258

    Article  CAS  Google Scholar 

  63. Wang H, Xie A, Li X, Wang Q, Zhang W, Zhu Z, Wei J, Chen D, Peng Y, Luo S (2021) Three-dimensional petal-like graphene Co3.0Cu1.0 metal organic framework for oxygen evolution reaction. J Alloys Compd 884:161144

    Article  CAS  Google Scholar 

  64. Xie A, Du J, Tao F, Tao Y, Xiong Z, Luo S, Li X, Yao C (2019) Three-dimensional graphene surface-mounted nickel-based metal organic framework for oxygen evolution reaction. Electrochim Acta 305:338–348

    Article  CAS  Google Scholar 

  65. Xie A, Zhang J, Tao X, Zhang J, Wei B, Peng W, Tao Y, Luo S (2019) Nickel-based MOF derived Ni @ NiO/N–C nanowires with core-shell structure for oxygen evolution reaction. Electrochim Acta 324:134814

    Article  CAS  Google Scholar 

  66. Li Q, He H, Zheng Z, Zhang L, Chen J, Li S, Zhang B, Zhang J, Luo S, Xie A (2022) Walnut-like β-Ni(OH)2/polypyrrole microsphere with enhanced performance for the oxygen evolution reaction. Ionics 28:4341–4351

    Article  CAS  Google Scholar 

  67. Bao J, Zhang X, Fan B, Zhang J, Zhou M, Yang W, Hu X, Wang H, Pan B, Xie Y (2015) Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed 54:7399–7404

    Article  CAS  Google Scholar 

  68. Wang Y, Zhou T, Jiang K, Da P, Peng Z, Tang J, Kong B, Cai W-B, Yang Z, Zheng G (2014) Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv Energy Mater 4:1400696

    Article  Google Scholar 

  69. Zhao S, Wang Y, Dong J, He C-T, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z (2016) Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 1:16184

    Article  CAS  Google Scholar 

  70. Bikkarolla SK, Papakonstantinou P (2015) CuCo2O4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst. J Power Sources 281:243–251

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuning Liang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Jin, H., Gao, Y. et al. Ferric hydroxide/NiCo-MOF composite materials as efficient electrocatalysts for the oxygen evolution reaction. Ionics 29, 1285–1300 (2023). https://doi.org/10.1007/s11581-023-04926-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04926-y

Keywords

Navigation