Skip to main content
Log in

Study on the modification of cobalt site-doped NiCo2-yXyO4 by in situ growth method as supercapacitor material

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The spinel structural NiCo2O4 material used in super capacitor has fine electrode chemical performance, but the operating availability and discharge capacity of its active substance are not good. In this paper, a new kind of NiCo2O4 material which fabricated in situ on nickel foam was prepared by hydrothermal method, and the material was further modified by doping at cobalt position. Through the synthesis and modification processes mentioned above, the NiCo1.98X0.02O4 material (X = Fe, Cu, Mg, V, Ag, Mn, Mo, Ti) were prepared for further tests. According to the test results, the area ratio capacitance of active substance can be increased by the optimization of the type and amount of doped metal. Subsequently, the optimized NiCo1.99Mg0.01O4 and NiCo1.95Cu0.05O4 materials were characterized by XRD, SEM, EDS, XPS, and FT-IR. Through above characterizations, it can be found that materials doped with different metals have both similarities and differences. However, the doping at the cobalt site has not changed the crystal structure of the NiCo2O4 material, and the electrochemical properties of the doped materials are stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Radhakrishnan S, Kim HY, Kim BS (2016) Expeditious and eco-friendly fabrication of highly uniform microflower superstructures and their applications in highly durable methanol oxidation and high-performance supercapacitors. J Mater Chem A 4(5):12253–12262

    Article  CAS  Google Scholar 

  2. Ko TH, Lei D, Balasubramaniam S, Seo MK, Chung YS, Kim HY, Kim BS (2017) Polypyrrole-decorated hierarchical NiCo2O4 nanoneedles/carbon fiber papers for flexible high-performance supercapacitor applications. Electrochem. Acta 247(8):524–534

    Article  CAS  Google Scholar 

  3. Yang DF, Bock C (2017) Laser erduced graphene for cupercapacitor applications. J Power Sources 337(2):73–81

    Article  CAS  Google Scholar 

  4. Bao L, Chen S, Peng C (2016) 3Dgraphene framework/Co3O4 composites eletrode for high performance supercapacitor and enzymeless giucose detection. Small 13(12):16020–16027

    Google Scholar 

  5. Liu LY, Zhang X, Li HX (2017) Synthesis of Co–Ni oxide microflowers as a superior anode for hybrid supercapacitors with ultralong cycle life. Chin Chem Lett 28(16):206–212

    Article  CAS  Google Scholar 

  6. Balamurugan J, Li C, Peera SG et al (2017) High-energy asymmetric supercapacitors based on free-standing hierarchical Co-Mo-S nanosheets with enhanced cycling stability[J]. Nanoscale 9(36):13747–13759

    Article  CAS  PubMed  Google Scholar 

  7. Shao YL, El-Kady MF, Sun JY et al (2018) Design and mechanisms of asymmetric supercapacitors[J]. Chem Rev 118(18):9233–9280

    Article  CAS  PubMed  Google Scholar 

  8. Bhagwan J, Nagaraj J, Ramulu B et al (2019) Rapid synthesis of hexagonal NiCo2O4 nanostructures for high-performance asymmetric supercapacitors[J]. Electrochim Acta 299:509–517

    Article  CAS  Google Scholar 

  9. Chen HY, Wang JP, Han XR et al (2019) Facile synthesis of mesoporous ZnCo2O4 hierarchical microspheres and their excellent supercapacitor performance[J]. Ceram Int 45:8577–8584

    Article  CAS  Google Scholar 

  10. Gong YQ, Yang Z, Lin Y et al (2018) Hierarchical heterostructure NiCo2O4@CoMoO4/NF as an efficient bifunctional electrocatalyst for overall water splitting[J]. J Mater Chem A 6(35):16950–16958

    Article  CAS  Google Scholar 

  11. Shinde SK, Ramesh S, Bathula C et al (2019) Novel approach to synthesize NiCo2S4 composite for high-performance supercapacitor application with different molar ratio of Ni and Co[J]. Sci Rep 9(1):1–10

    Article  CAS  Google Scholar 

  12. Ramesh S, Vikraman D, Karuppasamy K et al (2019) Controlled synthesis of SnO2@ NiCo2O4/nitrogen doped multiwalled carbon nanotube hybrids as an active electrode material for supercapacitors[J]. J Alloy Compd 794:186–194

    Article  CAS  Google Scholar 

  13. Shinde SK, Yadav HM, Ramesh S et al (2020) High-performance symmetric supercapacitor; nanoflower-like NiCo2O4//NiCo2O4 thin films synthesized by simple and highly stable chemical method[J]. J Mol Liq 299:112119

    Article  CAS  Google Scholar 

  14. Zhang X, Zhou Y, Luo B et al (2018) Microwave-assisted synthesis of NiCo2O4 double-shelled hollow spheres for high-performance sodium ion batteries[J]. Nano-Micro Letters 10(1):13

    Article  PubMed  CAS  Google Scholar 

  15. Wei TY, Chen CH, Chien HC et al (2010) A cost-effective supercapacitor material oultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process[J]. Adv Mater 22(3):347–351

    Article  CAS  PubMed  Google Scholar 

  16. Wang S, Zou Y, Xu F et al (2021) Morphological control and electrochemical performance of NiCo2O4@ NiCo layered double hydroxide as an electrode for supercapacitors[J]. J Energy Storage 41:102862

    Article  Google Scholar 

  17. Mao X, Zou Y, Xu F et al (2021) Three-dimensional self-supporting Ti3C2 with MoS2 and Cu2O nanocrystals for high-performance flexible supercapacitors[J]. ACS Appl Mater Interfaces 13(19):22664–22675

    Article  CAS  PubMed  Google Scholar 

  18. Zhang P, Zhou JY, Chen WJ et al (2017) Constructing highly-efficient electron transport channels in the 3D electrode materials for high-rate supercapacitors: the case of NiCo2O4@NiMoO4 hierarchical nanostructures[J]. Chem Eng J 307:687–695

    Article  CAS  Google Scholar 

  19. Kim T, Ramadoss A, Saravanakumar B et al (2016) Synthesis and characterization of NiCo2O4, nanoplates as efficient electrode materials for electrochemical supercapacitors[J]. Appl Surf Sci 370:452–458

    Article  CAS  Google Scholar 

  20. Wu J, Guo P, Mi R et al (2015) Ultrathin NiCo2O4 nanosheets grown on three-dimensional interwoven nitrogen-doped carbon nanotubes as binder-free electrodes for high-performance supercapacitors[J]. Journal of Materials Chemistry A 3(29):15331–15338

    Article  CAS  Google Scholar 

  21. Kuang M, Zhang YX, Li TT et al (2015) Tunable synthesis of hierarchical NiCo2O4, nanosheets-decorated Cu/CuOx nanowires architectures for asymmetric electrochemical capacitors[J]. J Power Sources 283:270–278

    Article  CAS  Google Scholar 

  22. Wang T, Zhang H, Luo H et al (2015) Controlled synthesis of NiCo2O4 nanowires and nanosheets on reduced graphene oxide nanosheets for supercapacitors[J]. J Solid State Electrochem 19(11):3309–3317

    Article  CAS  Google Scholar 

  23. Zou R, Xu K, Wang T et al (2013) Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors[J]. J Mater Chem A 1(30):8560–8566

    Article  CAS  Google Scholar 

  24. Jokar E, Zad AI, Shahrokhian S (2015) Synthesis and characterization of NiCo2O4, nanorods for preparation of supercapacitor electrodes[J]. J Solid State Electrochem 19(1):269–274

    Article  CAS  Google Scholar 

  25. Wang Z, Zhang X, Zhang Z et al (2015) Hybrids of NiCo2O4 nanorods and nanobundles with graphene as promising electrode materials for supercapacitors.[J]. J Colloid Interface Sci 460:303–309

    Article  CAS  PubMed  Google Scholar 

  26. Waghmode RB, Torane AP (2016) Hierarchical 3D NiCo2O4, nanoflowers as electrode materials for high performance supercapacitors[J]. J Mater Sci: Mater Electron 27(6):6133–6139

    CAS  Google Scholar 

  27. Xu K, Yang J, Li S et al (2016) Facile synthesis of hierarchical mesoporous NiCo2O4, nanoflowers with large specific surface area for high-performance supercapacitors[J]. Mater Lett 187:129–132

    Article  CAS  Google Scholar 

  28. Lei Y, Wang Y, Yang W et al (2015) Self-assembled hollow urchin-like NiCo2O4 microspheres for aqueous asymmetric supercapacitors[J]. RSC Adv 5(10):7575–7583

    Article  CAS  Google Scholar 

  29. Zhu Y, Ji X, Yin R et al (2017) Nanorod-assembled NiCo2O4 hollow microspheres assisted by an ionic liquid as advanced electrode materials for supercapacitors[J]. RSC Adv 7(18):11123–11128

    Article  CAS  Google Scholar 

  30. Liu L, Zhang H, Yang J et al (2015) Self-assembled novel dandelion-like NiCo2O4 microspheres@nanomeshes with superior electrochemical performance for supercapacitors and lithium-ion batteries[J]. J Mater Chem A 3(44):22393–22403

    Article  CAS  Google Scholar 

  31. Xu XY, Hong W, Zhao HL, Song Y, Qiu HX, Gao JP (2017) 3D hierarchical dandelion-like NiCo2O4/N-doped carbon/Ni foam for an effective binder-free supercapacitor electrode[J]. Mater Chem Phys 186:280–285

    Article  CAS  Google Scholar 

  32. Yang X, Xiang C, Zou Y et al (2020) Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes[J]. J Mater Sci Technol 55:223–230

    Article  Google Scholar 

  33. Xiang C, Wang Q, Zou Y et al (2017) Simple synthesis of graphene-doped flower-like cobalt–nickel–tungsten–boron oxides with self-oxidation for high-performance supercapacitors[J]. J Mater Chem A 5(20):9907–9916

    Article  CAS  Google Scholar 

  34. Liu Y, Xiang C, Chu H et al (2020) Binary Co–Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors[J]. J Mater Sci Technol 37:135–142

    Article  Google Scholar 

  35. Dong X, Xu H, Wang X et al (2012) 3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection[J]. ACS Nano 6(4):3206–3213

    Article  CAS  PubMed  Google Scholar 

  36. Zhao Y, He X, Chen R et al (2018) A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core-shell heterostructures[J]. Chem Eng J 352:29–38

    Article  CAS  Google Scholar 

  37. Liang K, Tang X, Hu W et al (2012) High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode[J]. J Mater Chem 22(22):11062–11067

    Article  CAS  Google Scholar 

  38. Ghodbane O, Louro M, Coustan L et al (2014) Microstructural and morphological effects on charge storage properties in MnO2-carbon nanofibers based supercapacitors[J]. J Electrochem Soc 160(11):2315–2321

    Article  CAS  Google Scholar 

  39. Xu J, Li L, Gao P et al (2015) Facile preparation of NiCo2O4, nanobelt/graphene composite for electrochemical capacitor application[J]. Electrochim Acta 166(7):206–214

    Article  CAS  Google Scholar 

  40. Han E, Han Y, Zhu L et al (2018) Polyvinyl pyrrolidone assisted synthesis of flower-like nickel-cobalt layered double hydroxide on Ni foam for high-performance hybrid supercapacitor[J]. Ionics 24(9):2705–2715

    Article  CAS  Google Scholar 

  41. Ding R, Qi L, Jia M et al (2013) Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid AC-NiCo2O4 electrochemical capacitors[J]. Electrochim Acta 107:494–502

    Article  CAS  Google Scholar 

  42. An C, Wang Y, Huang Y et al (2014) Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique[J]. Nano Energy 10:125–134

    Article  CAS  Google Scholar 

  43. Marco JF, Gancedo JR, Gracia M et al (2000) Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study[J]. J Solid State Chem 153(1):74–81

    Article  CAS  Google Scholar 

  44. Li GR, Song J, Pan GL et al (2011) Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells[J]. Energy Environ Sci 4(5):1680–1683

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is founded by the start-up foundation of postdoctoral innovation and practice base of Anyang Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhou, J., Hou, S. et al. Study on the modification of cobalt site-doped NiCo2-yXyO4 by in situ growth method as supercapacitor material. Ionics 28, 4755–4768 (2022). https://doi.org/10.1007/s11581-022-04721-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04721-1

Keywords

Navigation