Skip to main content
Log in

Improved electrochemical performance of LiFePO4/carbon cathode for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiFePO4/carbon (LFP/C) composites with different carbon contents are obtained through a carbothermic reduction process using glucose as carbon source. The effect of carbon content on the performance of LFP is investigated through structure and electrochemical characterization analysis. It is obvious that LFP/C composites significantly enhance the electrochemical performance compared with the unmodified LFP as the carbon content increases. In particular, LFP/C with 15% carbon content (LFP/C-15) exhibits the highest initial discharge specific capacity and the most superior capacity retention rate, with a discharge capacity of 160.7 mAh g−1 and a capacity retention rate of 82.1% after 100 cycles at 0.1 C. Moreover, the discharge capacity is already very close to the theoretical specific capacity of LiFePO4 (170 mAh g−1). However, when the carbon content reaches 20%, the electrochemical performance decreases instead, indicating that excessive carbon content has the opposite effect on the improvement of material performance. Hence, the carbon content plays a crucial role in the future improvement of the material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang X, Tu J, Lei M, Zuo Z, Wu B, Zhou H (2016) Selection of carbon sources for enhancing 3D conductivity in the secondary structure of LiFePO4/C cathode. Electrochimica Acta 193:206–215. https://doi.org/10.1016/j.electacta.2016.02.068

    Article  CAS  Google Scholar 

  2. Gao C, Zhou J, Liu G, Wang L (2017) Synthesis of F-doped LiFePO4/C cathode materials for high performance lithium-ion batteries using co-precipitation method with hydrofluoric acid source. J Alloys Compd 727:501–513. https://doi.org/10.1016/j.jallcom.2017.08.149

    Article  CAS  Google Scholar 

  3. Hong S-A, Kim DH, Chung KY, Chang W, Yoo J, Kim J (2014) Toward uniform and ultrathin carbon layer coating on lithium iron phosphate using liquid carbon dioxide for enhanced electrochemical performance. J Power Sources 262:219–223. https://doi.org/10.1016/j.jpowsour.2014.03.132

    Article  CAS  Google Scholar 

  4. Lim J, Gim J, Song J, Nguyen DT, Kim S, Jo J, Mathew V, Kim J (2016) Direct formation of LiFePO4/graphene composite via microwave-assisted polyol process. J Power Sources 304:354–359. https://doi.org/10.1016/j.jpowsour.2015.11.069

    Article  CAS  Google Scholar 

  5. Schmuch R, Wagner R, Hörpel G, Placke T, Winter M (2018) Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 3:267–278. https://doi.org/10.1038/s41560-018-0107-2

    Article  CAS  Google Scholar 

  6. Tian Z, Liu S, Ye F, Yao S, Zhou Z, Wang S (2014) Synthesis and characterization of LiFePO4 electrode materials coated by graphene. App Surf Sci 305:427–432. https://doi.org/10.1016/j.apsusc.2014.03.106

    Article  CAS  Google Scholar 

  7. Wang Q, Peng D, Chen Y, Xia X, Liu H, He Y, Ma Q (2018) A facile surfactant-assisted self-assembly of LiFePO4/graphene composites with improved rate performance for lithium ion batteries. J of Electroanal Chem 818:68–75. https://doi.org/10.1016/j.jelechem.2018.04.030

    Article  CAS  Google Scholar 

  8. Adepoju AA, Williams QL (2020) High C-rate performance of LiFePO4/carbon nanofibers composite cathode for Li-ion batteries. Curr App Phys 20:1–4. https://doi.org/10.1016/j.cap.2019.09.014

    Article  Google Scholar 

  9. Du G, Zhou Y, Tian X, Wu G, Xi Y, Zhao S (2018) High-performance 3D directional porous LiFePO4/C materials synthesized by freeze casting. App Surf Sci 453:493–501. https://doi.org/10.1016/j.apsusc.2018.05.142

    Article  CAS  Google Scholar 

  10. Huang C, Ai D, Wang L, He X (2013) Rapid synthesis of LiFePO4 by coprecipitation. Chem Lett 42:1191–1193. https://doi.org/10.1246/cl.130436

    Article  CAS  Google Scholar 

  11. Wei X, Guan Y, Zheng X, Zhu Q, Shen J, Qiao N, Zhou S, Xu B (2018) Improvement on high rate performance of LiFePO4 cathodes using graphene as a conductive agent. Appl Surf Sci 440:748–754. https://doi.org/10.1016/j.apsusc.2018.01.201

    Article  CAS  Google Scholar 

  12. Li D, Huang Y, Sharma N, Chen Z, Jia D, Guo Z (2012) Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction. Phys Chem Chem Phys 14:3634–3639. https://doi.org/10.1039/c2cp24062a

    Article  CAS  PubMed  Google Scholar 

  13. Shi M, Kong L-B, Liu J-B, Yan K, Li J-J, Dai Y-H, Luo Y-C, Kang L (2015) A novel carbon source coated on C-LiFePO4 as a cathode material for lithium-ion batteries. Ionics 22:185–192. https://doi.org/10.1007/s11581-015-1549-1

    Article  CAS  Google Scholar 

  14. Wang X, Huang Y, Jia D, Guo Z, Ni D, Miao M (2010) Preparation and characterization of high-rate and long-cycle LiFePO4/C nanocomposite as cathode material for lithium-ion battery. J Solid State Electrochem 16:17–24. https://doi.org/10.1007/s10008-010-1269-4

    Article  CAS  Google Scholar 

  15. Yi X, Zhang F, Zhang B, Yu W-J, Dai Q, Hu S, He W, Tong H, Zheng J, Liao J (2018) (010) facets dominated LiFePO4 nano-flakes confined in 3D porous graphene network as a high-performance Li-ion battery cathode. Ceram In 44:18181–18188. https://doi.org/10.1016/j.ceramint.2018.07.026

    Article  CAS  Google Scholar 

  16. Gong H, Xue H, Wang T, He J (2016) In-situ synthesis of monodisperse micro-nanospherical LiFePO4 /carbon cathode composites for lithium-ion batteries. J Power Sour 318:220–227. https://doi.org/10.1016/j.jpowsour.2016.03.100

    Article  CAS  Google Scholar 

  17. Su C, Bu X, Xu L, Liu J, Zhang C (2012) A novel LiFePO4/graphene/carbon composite as a performance-improved cathode material for lithium-ion batteries. Electrochimica Acta 64:190–195. https://doi.org/10.1016/j.electacta.2012.01.014

    Article  CAS  Google Scholar 

  18. Tian X, Zhou Y, Wu G, Wang P, Chen J (2017) Controllable synthesis of porous LiFePO4 for tunable electrochemical Li-insertion performance. Electrochimica Acta 229:316–324. https://doi.org/10.1016/j.electacta.2017.01.093

    Article  CAS  Google Scholar 

  19. Wu K, Hu G, Du K, Peng Z, Cao Y (2015) Improved electrochemical properties of LiFePO4/graphene/carbon composite synthesized from FePO4·2H2O/graphene oxide. Ceram Int 41:13867–13871. https://doi.org/10.1016/j.ceramint.2015.06.130

    Article  CAS  Google Scholar 

  20. Yang C-C, Hsu Y-H, Shih J-Y, Wu Y-S, Karuppiah C, Liou T-H, Lue SJ (2017) Preparation of 3D micro/mesoporous LiFePO4 composite wrapping with porous graphene oxide for high-power lithium ion battery. Electrochimica Acta 258:773–785. https://doi.org/10.1016/j.electacta.2017.11.126

    Article  CAS  Google Scholar 

  21. Liu T, Cao F, Ren L, Li X, Sun S, Sun X, Zang Z, Niu Q, Wu J (2017) A theoretical study of different carbon coatings effect on the depolarization effect and electrochemical performance of LiFePO4 cathode. J Electroanal Chem 807:52–58. https://doi.org/10.1016/j.jelechem.2017.11.021

    Article  CAS  Google Scholar 

  22. Zhang K, Lee JT, Li P, Kang B, Kim JH, Yi GR, Park JH (2015) Conformal coating strategy comprising N-doped carbon and conventional graphene for achieving ultrahigh power and cyclability of LiFePO4. Nano Lett 15:6756–6763. https://doi.org/10.1021/acs.nanolett.5b02604

    Article  CAS  PubMed  Google Scholar 

  23. Ni J, Zhao Y, Chen J, Gao L, Lu L (2014) Site-dependent electrochemical performance of Mg doped LiFePO4. Electrochem Commun 44:4–7. https://doi.org/10.1016/j.elecom.2014.04.004

    Article  CAS  Google Scholar 

  24. Liu Y, Gu Y-J, Luo G-Y, Chen Z-L, Wu F-Z, Dai X-Y, Mai Y, Li J-Q (2020) Ni-doped LiFePO4/C as high-performance cathode composites for Li-ion batteries. Ceram Int 46:14857–14863. https://doi.org/10.1016/j.ceramint.2020.03.011

    Article  CAS  Google Scholar 

  25. Khan S, Raj RP, Mohan TVR, Bhuvaneswari S, Varadaraju UV, Selvam P (2019) Electrochemical performance of nano-LiFePO4 embedded ordered mesoporous nitrogenous carbon composite as cathode material for Li-ion battery applications. J Electroanal Chem 848:113242–113251. https://doi.org/10.1016/j.jelechem.2019.113242

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyan Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhao, R., Xia, Y. et al. Improved electrochemical performance of LiFePO4/carbon cathode for lithium-ion batteries. Ionics 28, 4579–4585 (2022). https://doi.org/10.1007/s11581-022-04715-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04715-z

Keywords

Navigation