Skip to main content
Log in

Ni-MOF nanocomposites decorated by au nanoparticles: an electrochemical sensor for detection of uric acid

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

A Correction to this article was published on 17 September 2022

This article has been updated

Abstract

In recent years, metal–organic framework (MOF) has become a hot electrode material for electrochemistry. However, it has rarely been studied in uric acid detection. In this paper, cubic Ni-based MOF has been synthesized by Ni(NO3)2·6H2O and H3BTC in room temperature; then, Au nanoparticles (Au NPs) were decorated on Ni-MOF by in situ synthesis method. This electrochemical sensor can response to uric acid (UA) in solution and enhance response signal of UA detection. Next, some experiment conditions including pH, scan rate, and proportion between Au NPS and Ni-MOF have been optimized with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). And then, the Au/Ni-MOF has been charactered with scanning electron microscope, X-ray diffraction, and X-ray photoelectron spectroscopy. Experiment finding, this electrochemical sensor has a wide linearity range from 15 to 500 μM with a low detection limit of 5.6 μM (S/N = 3). Besides, the sensor constructed also has excellent selectivity and stability. Finally, the Au/Ni-MOF sensor was successfully applied in uric acid detection in the body’s serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Arif D, Hussain Z, Sohail M, Liaqat MA, Khan MA, Noor T (2020) A non-enzymatic electrochemical sensor for glucose detection based on Ag@TiO2@ metal-organic framework (ZIF-67) Nanocomposite. Front Chem 8:573510. https://doi.org/10.3389/fchem.2020.573510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Du J, Yue R, Yao Z, Jiang F, Du Y et al (2013) Nonenzymatic uric acid electrochemical sensor based on graphene-modified carbon fiber electrode. Colloid Surface A 419:94–99. https://doi.org/10.1016/j.colsurfa.2012.11.060

    Article  CAS  Google Scholar 

  3. Mahmoudian MR, Basirun WJ, Sookhakian M, Woi PM, Zalnezhad E et al (2019) Synthesis and characterization of α-Fe2O3/polyaniline nanotube composite as electrochemical sensor for uric acid detection. Adv Powder Technol 30:384–392. https://doi.org/10.1016/j.apt.2018.11.015

    Article  CAS  Google Scholar 

  4. Azeredo NFB, Goncalves JM, Rossini PO, Araki K, Wang J, Angnes L (2020) Uric acid electrochemical sensing in biofluids based on Ni/Zn hydroxide nanocatalyst. Mikrochim Acta 187:379. https://doi.org/10.1007/s00604-020-04351-2

    Article  CAS  PubMed  Google Scholar 

  5. Guo X, Yue H, Song S, Huang S, Gao X et al (2020) Simultaneous electrochemical determination of dopamine and uric acid based on MoS2nanoflowers-graphene/ITO electrode. Microchem J 154:104527. https://doi.org/10.1016/j.microc.2019.104527

    Article  CAS  Google Scholar 

  6. Bi Y-S, Liu B, Liu X-Y, Qin Y, Zou B-X (2020) A h-BCN for electrochemical sensor of dopamine and uric acid. J Nanomater 2020:1–9. https://doi.org/10.1155/2020/4604820

    Article  CAS  Google Scholar 

  7. Lu S, Hummel M, Chen K, Zhou Y, Kang S, Gu Z (2020) Synthesis of Au@ZIF-8 nanocomposites for enhanced electrochemical detection of dopamine. Electrochem Commun 114:106715. https://doi.org/10.1016/j.elecom.2020.106715

    Article  CAS  Google Scholar 

  8. Liu T, Zhou M, Pu Y, Liu L, Li F et al (2021) Silver nanoparticle-functionalized 3D flower-like copper (II)-porphyrin framework nanocomposites as signal enhancers for fabricating a sensitive glutathione electrochemical sensor. Sens Actuators B 342:130047. https://doi.org/10.1016/j.snb.2021.130047

    Article  CAS  Google Scholar 

  9. Li Y, Xie M, Zhang X, Liu Q, Lin D et al (2019) Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection. Sens Actuators B 278:126–132. https://doi.org/10.1016/j.snb.2018.09.076

    Article  CAS  Google Scholar 

  10. Goncalves JM, Martins PR, Rocha DP, Matias TA, Juliao MSS et al (2021) Recent trends and perspectives in electrochemical sensors based on MOF-derived materials. J Mater Chem C 9:8718–8745. https://doi.org/10.1039/d1tc02025k

    Article  CAS  Google Scholar 

  11. Qiu Z, Yang T, Gao R, Jie G, Hou W (2019) An electrochemical ratiometric sensor based on 2D MOF nanosheet/Au/polyxanthurenic acid composite for detection of dopamine. J Electroanal Chem 835:123–129. https://doi.org/10.1016/j.jelechem.2019.01.040

    Article  CAS  Google Scholar 

  12. Stephenson CJ, Whitford CL, Stair PC, Farha OK, Hupp JT (2016) Chemoselective hydrogenation of crotonaldehyde catalyzed by an Au@ZIF-8 composite. ChemCatChem 8:855–860. https://doi.org/10.1002/cctc.201501171

    Article  CAS  Google Scholar 

  13. Jiang X, Zhao C, Zhong C, Li J (2017) The electrochemical sensors based on MOF and their applications. Progress in Chemistry 29:1206–1214. https://doi.org/10.7536/pc170619

    Article  CAS  Google Scholar 

  14. Ma Z-Z, Ma Y, Liu B, Xu L, Jiao H (2021) A high-performance Co-MOF non-enzymatic electrochemical sensor for glucose detection. New J Chem 45:21350–21358. https://doi.org/10.1039/d1nj04480j

    Article  CAS  Google Scholar 

  15. Rani S, Sharma B, Malhotra R, Kumar S, Varma RS, Dilbaghi N (2020) Sn-MOF@CNT nanocomposite: an efficient electrochemical sensor for detection of hydrogen peroxide. Environ Res 191:110005. https://doi.org/10.1016/j.envres.2020.110005

    Article  CAS  PubMed  Google Scholar 

  16. Tang J, Liu Y, Hu J, Zheng S, Wang X et al (2020) Co-based metal-organic framework nanopinnas composite doped with Ag nanoparticles: a sensitive electrochemical sensing platform for simultaneous determination of dopamine and acetaminophen. Microchem J 155:104759. https://doi.org/10.1016/j.microc.2020.104759

    Article  CAS  Google Scholar 

  17. Wu Z, Zhao DY, Dong Y, Li Y (2020) Raman-tag labelled Au@ZIF-8 for cell metabolism monitoring in vitro. Clin Hemorheol Microcirc 75:489–498. https://doi.org/10.3233/CH-200861

    Article  CAS  PubMed  Google Scholar 

  18. Yang H (2019) Highly sensitive electrochemical biosensor assembled by Au nanoparticle/MOF-5 composite electrode for DNA detection. Int J Electrochem Sci 14:5491–507. https://doi.org/10.20964/2019.06.49

    Article  CAS  Google Scholar 

  19. Huang X, Huang D, Chen J, Ye R, Lin Q, Chen S (2020) Fabrication of novel electrochemical sensor based on bimetallic Ce-Ni-MOF for sensitive detection of bisphenol A. Anal Bioanal Chem 412:849–860. https://doi.org/10.1007/s00216-019-02282-3

    Article  CAS  PubMed  Google Scholar 

  20. Xue Z, Jia L, Zhu R-R, Du L, Zhao Q-H (2020) High-performance non-enzymatic glucose electrochemical sensor constructed by transition nickel modified Ni@Cu-MOF. J Electroanal Chem 858:113783. https://doi.org/10.1016/j.jelechem.2019.113783

    Article  CAS  Google Scholar 

  21. Chen J, Yin H, Zhou J, Wang L, Gong J et al (2020) Efficient nonenzymatic sensors based on Ni-MOF microspheres decorated with Au nanoparticles for glucose detection. J Electron Mater 49:4754–4763. https://doi.org/10.1007/s11664-020-08191-x

    Article  CAS  Google Scholar 

  22. Zhang X, Xu Y, Ye B (2018) An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). J Alloys Compd 767:651–656. https://doi.org/10.1016/j.jallcom.2018.07.175

    Article  CAS  Google Scholar 

  23. Zeraati M, Alizadeh V, Kazemzadeh P, Safinejad M, Kazemian H, Sargazi G (2021) A new nickel metal organic framework (Ni-MOF) porous nanostructure as a potential novel electrochemical sensor for detecting glucose. J Porous Mater. https://doi.org/10.1007/s10934-021-01164-3

    Article  Google Scholar 

  24. Guo H, Zhang T, Wang M, Sun L, Zhang J et al (2021) Electrochemical behavior of MOF-801/MWCNT-COOH/AuNPs: a highly selective electrochemical sensor for determination of guanine and adenine. Colloid Surf A 627:127195. https://doi.org/10.1016/j.colsurfa.2021.127195

    Article  CAS  Google Scholar 

  25. Xiao L, Xu R, Yuan Q, Wang F (2017) Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta 167:39–43. https://doi.org/10.1016/j.talanta.2017.01.078

    Article  CAS  PubMed  Google Scholar 

  26. Kurniawan F, Kiswiyah NSA, Madurani KA, Tominaga M (2018) Electrochemical sensor based on single-walled carbon nanotubes-modified gold electrode for uric acid detection. J Electrochem Soc 165:B515–B522. https://doi.org/10.1149/2.0991811jes

    Article  CAS  Google Scholar 

  27. Murugan N, Chan-Park MB, Sundramoorthy AK (2019) Electrochemical detection of uric acid on exfoliated nanosheets of graphitic-like carbon nitride (g-C3N4) based sensor. J Electrochem Soc 166:B3163–B3170. https://doi.org/10.1149/2.0261909jes

    Article  CAS  Google Scholar 

  28. Zheng C, Pei F, Feng S, Wu Y, Ding Y, Lei W (2020) Electrochemical synthesis of nickel–copper alloy nanocomposite to fabricate an electrochemical sensor for uric acid. NANO 15:2050153. https://doi.org/10.1142/s1793292020501532

    Article  CAS  Google Scholar 

  29. Li G, Liu S, Liu D, Zhang N (2021) MOF-derived porous nanostructured Ni2P/C material with highly sensitive electrochemical sensor for uric acid. Inorg Chem Commun 130:108713. https://doi.org/10.1016/j.inoche.2021.108713

    Article  CAS  Google Scholar 

  30. Lv J, Li C, Feng S, Chen S-M, Ding Y et al (2019) A novel electrochemical sensor for uric acid detection based on PCN/MWCNT. Ionics 25:4437–4445. https://doi.org/10.1007/s11581-019-03010-8

    Article  CAS  Google Scholar 

  31. Buledi JA, Ameen S, Memon SA, Fatima A, Solangi AR et al (2021) An improved non-enzymatic electrochemical sensor amplified with CuO nanostructures for sensitive determination of uric acid. Open Chem 19:481–491. https://doi.org/10.1515/chem-2021-0029

    Article  CAS  Google Scholar 

  32. Eryigit M, Kurt Urhan B, Dogan HO, Ozer TO, Demir U (2022) ZnO nanosheets-decorated ERGO layers: an efficient electrochemical sensor for non-enzymatic uric acid detection. IEEE Sens J 22:5555–5561. https://doi.org/10.1109/jsen.2022.3150088

    Article  CAS  Google Scholar 

  33. Pan Y, Zuo J, Hou Z, Huang Y, Huang C (2020) Preparation of electrochemical sensor based on zinc oxide nanoparticles for simultaneous determination of AA, DA, and UA. Front Chem 8:592538. https://doi.org/10.3389/fchem.2020.592538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mazzara F, Patella B, Aiello G, O’Riordan A, Torino C et al (2021) Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors. Electrochim Acta 388:138652. https://doi.org/10.1016/j.electacta.2021.138652

    Article  CAS  Google Scholar 

Download references

Funding

This work was sponsored by the Chongqing Natural Science Foundation of China (CSTC-2018JSCX-MSYBX014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxiao Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the originally published article, the Abstract section was incorrectly captured during typesetting. The correct Abstract section is given here.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Liu, L., Liu, T. et al. Ni-MOF nanocomposites decorated by au nanoparticles: an electrochemical sensor for detection of uric acid. Ionics 28, 4843–4851 (2022). https://doi.org/10.1007/s11581-022-04712-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04712-2

Keywords

Navigation