Skip to main content
Log in

Facile regulation of Co3O4 morphologies towards enhanced performance as electrodes for lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, nanosized Co3O4 particles with nanosheet and octahedron morphologies were prepared through one-step hydrothermal method and template-free process. The morphology can be easily regulated through the precursor concentration and reaction time. The binder-free carbon cloth @Co3O4 octahedral electrodes delivered a reversible capacity of 507 mAh g−1 after 100 cycles at a current density of 300 mA g−1 and also exhibited superior rate performance. The kinetic behavior of CC@ Co3O4 octahedral electrodes was investigated and the results implied the capacitive process played the main role at higher cycle rates. The unique octahedral morphology with a greater area of (111) planes and high surface area may contribute to the superior electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang Z, Xiao B, Lin Z, Xu Y, Lin Y, Meng F, Zhang Q, Gu L, Fang B, Guo S, Zhong W (2021) PtSe2 /Pt heterointerface with reduced coordination for boosted hydrogen evolution reaction. Angew Chem Int Ed Engl 60:23388–23393

    Article  CAS  PubMed  Google Scholar 

  2. Shen S, Wang Z, Lin Z, Song K, Zhang Q, Meng F, Gu L, Zhong W (2022) Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv Mater 34:2110631

    Article  CAS  Google Scholar 

  3. Ma S, Deng J, Xu Y, Tao W, Wang X, Lin Z, Zhang Q, Gu L, Zhong W (2022) Pollen-like self-supported FeIr alloy for improved hydrogen evolution reaction in acid electrolyte. J Energy Chem 66:560–565

    Article  Google Scholar 

  4. Hu Q, Tang M, He M, Jiang N, Xu C, Lin D, Zheng Q (2020) Core-shell MnO2@CoS nanosheets with oxygen vacancies for high-performance supercapattery. J Power Sources 446:227335

  5. Mei J, Liao T, Ayoko GA, Bell J, Sun Z (2019) Cobalt oxide-based nanoarchitectures for electrochemical energy applications. Prog Mater Sci 103:596–677

    Article  CAS  Google Scholar 

  6. Tang X, Feng Q, Huang J, Liu K, Luo X, Peng Q (2018) Carbon-coated cobalt oxide porous spheres with improved kinetics and good structural stability for long-life lithium-ion batteries. J Colloid Interface Sci 510:368–375

    Article  CAS  PubMed  Google Scholar 

  7. Jiang J, Liu JP, Huang XT, Li YY, Ding RM, Ji XX, Hu YY, Chi QB, Zhu ZH (2010) General synthesis of large-scale arrays of one-dimensional nanostructured Co3O4directly on heterogeneous substrates. Cryst Growth Des 10:70–75

    Article  CAS  Google Scholar 

  8. Zhong L, Zhou H, Li R, Cheng H, Wang S, Chen B, Zhuang Y, Chen J, Yuan A (2021) Co/CoOx heterojunctions encapsulated N-doped carbon sheets via a dual-template-guided strategy as efficient electrocatalysts for rechargeable Zn-air battery. J Colloid Interface Sci 599:46–57

    Article  CAS  PubMed  Google Scholar 

  9. Shao J, Feng J, Zhou H, Yuan A (2019) Graphene aerogel encapsulated Fe-Co oxide nanocubes derived from Prussian blue analogue as integrated anode with enhanced Li-ion storage properties. Appl Surf Sci 471:745–752

    Article  CAS  Google Scholar 

  10. Shi R, Chen G, Ma W, Zhang D, Qiu G, Liu X (2012) Shape-controlled synthesis and characterization of cobalt oxides hollow spheres and octahedra. Dalton Trans 41:5981–5987

    Article  CAS  PubMed  Google Scholar 

  11. Chen M, Xia X, Qi M, Yuan J, Yin J, Chen Q (2016) Self-supported porous CoO semisphere arrays as binder-free electrodes for high-performance lithium ion batteries. Mater Res Bull 73:125–129

    Article  CAS  Google Scholar 

  12. Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou XW (2012) Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ Sci 5:7883–7887

    Article  CAS  Google Scholar 

  13. Zhao G, Sun X, Zhang L, Chen X, Mao Y, Sun K (2018) A self-supported metal-organic framework derived Co 3 O 4 film prepared by an in-situ electrochemically assistant process as Li ion battery anodes. J Power Sources 389:8–12

    Article  CAS  Google Scholar 

  14. Tang N, Wang W, You H, Zhai Z, Hilario J, Zeng L, Zhang L (2019) Morphology tuning of porous CoO nanowall towards enhanced electrochemical performance as supercapacitors electrodes. Catal Today 330:240–245

    Article  CAS  Google Scholar 

  15. Yao Y, Zhu Y, Zhao S, Shen J, Yang X, Li C (2018) Halide ion intercalated electrodeposition synthesis of Co3O4 nanosheets with tunable pores on graphene foams as free-standing and flexible Li-ion battery anodes. ACS Appl Energy Mater 1:1239–1251

    Article  CAS  Google Scholar 

  16. Wan H, Liu Y, Zhang H, Zhang W, Jiang N, Wang Z, Luo S, Arandiyan H, Liu H, Sun H (2018) Improved lithium storage properties of Co3O4 nanoparticles via laser irradiation treatment. Electrochim Acta 281:31–38

    Article  CAS  Google Scholar 

  17. Shao J, Zhou H, Zhu M, Feng J, Yuan A (2018) Facile synthesis of metal-organic framework-derived Co3O4 with different morphologies coated graphene foam as integrated anodes for lithium-ion batteries. J Alloys Compd 768:1049–1057

    Article  CAS  Google Scholar 

  18. Ma Y, Liu P, Xie Q, Zhang C, Wang L, Peng D-L (2020) Intrinsic performance regulation in hierarchically porous Co3O4 microrods towards high-rate lithium ion battery anode. Mater Today Energy 16:100383

    Article  Google Scholar 

  19. Xu X, Zhao R, Chen B, Wu L, Zou C, Ai W, Zhang H, Huang W, Yu T (2019) Progressively exposing active facets of 2D nanosheets toward enhanced pseudocapacitive response and high-rate sodium storage. Adv Mater 31:1900526

    Article  CAS  Google Scholar 

  20. Yang J, Chen Q (2008) Growth and characterization of octahedral cobalt oxide particles in supercritical carbon dioxide system. Chinese J Inorgan Chem 24:439–445

    CAS  Google Scholar 

  21. Tang X, Li J, Hao J (2008) Synthesis and characterization of spinel Co3O4 octahedra enclosed by the 111 facets. Mater Res Bull 43:2912–2918

    Article  CAS  Google Scholar 

  22. Guo J, Chen L, Zhang X, Jiang B, Ma L (2014) Sol-gel synthesis of mesoporous Co3O4 octahedra toward high-performance anodes for lithium-ion batteries. Electrochim Acta 129:410–415

    Article  CAS  Google Scholar 

  23. Ji H, Ma C, Ding J, Yang J, Yang G, Chao Y, Yang Y (2019) Complementary stabilization by core/sheath carbon nanofibers/spongy carbon on submicron tin oxide particles as anode for lithium-ion batteries. J Power Sources 413:42–49

    Article  CAS  Google Scholar 

  24. Chen S, Liu B, Zhang X, Chen F, Shi H, Hu C, Chen J (2019) Growth of polyaniline on TiO2 tetragonal prism arrays as electrode materials for supercapacitor. Electrochim Acta 300:373–379

    Article  CAS  Google Scholar 

  25. Tan H, Cho H-W, Wu J-J (2018) Binder-free ZnO@ZnSnO3 quantum dots core-shell nanorod array anodes for lithium-ion batteries. J Power Sources 388:11–18

    Article  CAS  Google Scholar 

  26. Zhang W, Zhang Y, Yang Z, Chen G, Ma G, Wang Q (2016) In-situ design and construction of lithium-ion battery electrodes on metal substrates with enhanced performances: a brief review. Chin J Chem Eng 24:48–52

    Article  Google Scholar 

  27. Zhang Y, Li Y, Chen J, Zhao P, Li D, Mu J, Zhang L (2017) CoO/Co3O4 /graphene nanocomposites as anode materials for lithium-ion batteries. J Alloys Compd 699:672–678

    Article  CAS  Google Scholar 

  28. Li J, Li Z, Ning F, Zhou L, Zhang R, Shao M, Wei M (2018) Ultrathin mesoporous Co3O4 nanosheet arrays for high-performance lithium-ion batteries. ACS Omega 3:1675–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang D, Wang Y, Li Q, Guo W, Zhang F, Niu S (2018) Urchin-like α-Fe2O3 /MnO2 hierarchical hollow composite microspheres as lithium-ion battery anodes. J Power Sources 393:186–192

    Article  CAS  Google Scholar 

  30. Xu L, Hu Y, Zhang H, Jiang H, Li C (2016) Confined synthesis of FeS2 nanoparticles encapsulated in carbon nanotube hybrids for ultrastable lithium-ion batteries. ACS Sustain Chem Eng 4:4251–4255

    Article  CAS  Google Scholar 

  31. Leng X, Ding X, Hu J, Wei S, Jiang Z, Lian J, Wang G, Jiang Q, Liu J (2016) In situ prepared reduced graphene oxide/CoO nanowires mutually-supporting porous structure with enhanced lithium storage performance. Electrochim Acta 190:276–284

    Article  CAS  Google Scholar 

  32. Zhou Y, Han Y, Zhang H, Sui D, Sun Z, Xiao P, Wang X, Ma Y, Chen Y (2018) A carbon cloth-based lithium composite anode for high-performance lithium metal batteries. Energy Stor Mater 14:222–229

    Article  Google Scholar 

  33. Balogun M-S, Qiu W, Lyu F, Luo Y, Meng H, Li J, Mai W, Mai L, Tong Y (2016) All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy 26:446–455

    Article  CAS  Google Scholar 

  34. Xiao X, Liu X, Zhao H, Chen D, Liu F, Xiang J, Hu Z, Li Y (2012) Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance. Adv Mater 24:5762–5766

    Article  CAS  PubMed  Google Scholar 

  35. Qi Y, Du N, Zhang H, Wang J, Yang Y, Yang D (2012) Nanostructured hybrid cobalt oxide/copper electrodes of lithium-ion batteries with reversible high-rate capabilities. J Alloys Compd 521:83–89

    Article  CAS  Google Scholar 

  36. Li F, Ren M, Liu W, Li G, Li M, Su L, Gao C, Hei J, Yang H (2017) Sea urchin-like CoO/Co/N-doped carbon matrix hybrid composites with superior high-rate performance for lithium-ion batteries. J Alloys Compd 701:524–532

    Article  CAS  Google Scholar 

  37. Liu H, Wang X, Wang J, Xu H, Yu W, Dong X, Zhang H, Wang L (2017) Hierarchical porous CoNi/CoO/NiO composites derived from dealloyed quasicrystals as advanced anodes for lithium-ion batteries. Scripta Mater 139:30–33

    Article  CAS  Google Scholar 

  38. Huang X-l, Wang R-z, Xu D, Wang Z-l, Wang H-g, Xu J-j, Wu Z, Liu Q-c, Zhang Y, Zhang X-b (2013) Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv Funct Mater 23:4345–4353

    Article  CAS  Google Scholar 

  39. Fu Y, Li X, Sun X, Wang X, Liu D, He D (2012) Self-supporting Co3O4 with lemongrass-like morphology as a high-performance anode material for lithium ion batteries. J Mater Chem 22:17429–17431

    Article  CAS  Google Scholar 

  40. Brezesinski T, Wang J, Polleux J, Dunn B, Tolbert SH (2009) Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J Am Chem Soc 131:1802–1809

    Article  CAS  PubMed  Google Scholar 

  41. Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931

    Article  CAS  Google Scholar 

  42. Wu L, Li H, Xie X, Chai K, Han P, Zhang C, Yang C (2019) Study on the effect of liquid nitrogen cold-quenching on electrochemical characteristic of TiO2 complex flakes with edged-curled derived from MAX as anode for lithium ion batteries. J Alloys Compd 780:482–490

    Article  CAS  Google Scholar 

  43. Gao Y, Yi R, Li YC, Song J, Chen S, Huang Q, Mallouk TE, Wang D (2017) General method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable Li-alloy anodes. J Am Chem Soc 139:17359–17367

    Article  CAS  PubMed  Google Scholar 

  44. Kotobuki M, Suzuki Y, Munakata H, Kanamura K, Sato Y, Yamamoto K, Yoshida T (2011) Effect of sol composition on solid electrode/solid electrolyte interface for all-solid-state lithium ion battery. Electrochim Acta 56:1023–1029

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the supports from the Science and Technology Department of Henan Province (Grant No: 212102210455), the Natural Science Foundation of Henan Province (Grant No: 202300410349), Project supported by the Higher Education Institutions of Henan Province for the Young Scientists (Grant No: 2020GGJS208), the Scientific Research Innovation Team of Xuchang University (Grant No: 2022CXTD006), and the Sixth Young Scholar Project of Xuchang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ying Chao.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2679 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Sui, MY., Yue, HW. et al. Facile regulation of Co3O4 morphologies towards enhanced performance as electrodes for lithium ion batteries. Ionics 28, 4569–4577 (2022). https://doi.org/10.1007/s11581-022-04703-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04703-3

Keywords

Navigation