Skip to main content
Log in

Direct synthesis of Ce0.8Sm0.2−xZnxO2−δ electrolyte by sol–gel for IT-SOFC

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, high-quality nanosized Ce0.8Sm0.2−xZnxO2−δ (x = 0, 0.02, 0.04, 0.08, and 0.16) powders are successfully synthesized by sol–gel process for intermediate-temperature solid oxide fuel cell (IT-SOFC) application. The thermal behavior, porosity, crystal phase, surface microstructure, and electrical properties of Ce0.8Sm0.2−xZnxO2−δ are studied by thermogravimetric-differential scanning calorimeter (TG-DSC), Archimedes drainage method, X-ray diffraction (XRD), scanning electron microscope (SEM), and electrochemical impedance spectroscopy (EIS), respectively. The results show that Ce0.8Sm0.2−xZnxO2−δ electrolyte appears very high sintering activity even at sintering temperature as low as 1300 °C. The crystal phase of sample powders after sintered at 600 °C belongs to single-phase cubic fluorite structure with mean particle size of 15 nm. The lattice parameter increases first until doping 2 mol.% Zn and then decreases with more doping amount. Electrochemical performance results demonstrate that doping with appropriate amount of Zn can significantly improve the conductivity of SDC materials. The highest conductivity of 0.057 S·cm−1 at 800 °C is obtained for Ce0.8Sm0.16Zn0.04O2−δ, owing to high density, ultrafine grains, and increased grain boundaries. Furthermore, the fuel cell performance of Ce0.8Sm0.16Zn0.04O2−δ electrolyte is measured with 5 wt.% Fe-loaded activated carbon as the fuel. It delivers an outstanding performance, with an OCV of 1.02 V, a maximum power output of 408 mW·cm−2 at 850 °C, indicating that Ce0.8Sm0.16Zn0.04O2−δ may have potential application for IT-SOFC electrolyte materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Basu RN, Tietz F, Teller O, Wessel E (2003) LaNi0.6Fe0.4O3 as a cathode contact material for solid oxide fuel cells. J Solid State Electrochem 7:416–420

  2. Koyama M, Wen CJ, Masuyama T, Otomo J, Fukunaga H, Yamada K, Eguchi K, Takahashi H (2001) The mechanism of porous Sm0.5Sr0.5CoO3 cathodes used in solid oxide fuel cells. J Electrochem Soc 148:A795–A801

  3. Simner SP, Bonnett JE, Canfield NL, Meinhardt KD, Shelton JP, Sprenkle VL, Stevenson JW (2003) Development of lanthanum ferrite SOFC cathodes. J Power Sources 113:1–10

    Article  CAS  Google Scholar 

  4. Kuharuangrong S (2007) Ionic conductivity of Sm, Gd, Dy and Er-doped ceria. J Power Sources 171:506–510

    Article  CAS  Google Scholar 

  5. Wang FY, Chen SY, Cheng S (2004) Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells. Electrochem Commun 6:743–746

  6. Meng X, Zhan ZL, Liu XJ, Wu H, Wang SR, Wen TL (2011) Low-temperature ceria-electrolyte solid oxide fuel cells for efficient methanol oxidation. J Power Sources 196:9961–9964

    Article  CAS  Google Scholar 

  7. Yahiro H, Eguchi K, Arai H (1989) Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ionics 36:71–75

    Article  CAS  Google Scholar 

  8. Wang DY, Nowick AS (1980) The “grain-boundary effect” in doped ceria solid electrolytes. J Solid State Chem 35:325–333

    Article  CAS  Google Scholar 

  9. Yoshida H, Miura K, Fukui T, Ohara S, Inagaki T (2002) Sintering behavior of Ln-doped ceria compounds containing gallia. J Power Sources 106:136–141

    Article  CAS  Google Scholar 

  10. Zheng Y, Chen C, Li S, Ge L, Chen H, Guo L (2011) Effect of the sintering temperature on the properties of Ce0.85La0.10Ca0.05O2−δ electrolyte material. Mater Res Bull 46:130–135

  11. Gao L, Zhou M, Zheng Y, Gu H, Chen H, Guo L (2010) Effect of zinc oxide on yttria doped ceria. J Power Sources 195:3130–3134

    Article  CAS  Google Scholar 

  12. Li S, Ge L, Gu H, Zheng Y, Chen H, Guo L (2011) Sinterability and electrical properties of ZnO-doped Ce0.8Y0.2O1.9 electrolytes prepared by an EDTA–citrate complexing method. J Alloys Compd 509:94–98

    Article  CAS  Google Scholar 

  13. Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ionics 83:1–16

    Article  CAS  Google Scholar 

  14. Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52:165–172

    Article  CAS  Google Scholar 

  15. Yoshida H, Inagaki T (2006) Effects of additives on the sintering properties of samaria-doped ceria. J Alloys Compd 408:632–636

  16. Zhang TS, Ma J, Leng YJ, Chan SH, Hing P, Kilner JA (2004) Effect of transition metal oxides on densification and electrical properties of Si-containing Ce0.8Gd0.2O2−δ ceramics. Solid State Ionics 168:187–195

    Article  CAS  Google Scholar 

  17. Cho YH, Cho PS, Auchterlonie G, Kim DK, Lee JH, Kim DY, Park HM, Drennan J (2007) Enhancement of grain-boundary conduction in gadolinia-doped ceria by the scavenging of highly resistive siliceous phase. Acta Mater 55:4807–4815

    Article  CAS  Google Scholar 

  18. Cheng JH, Xu RH, Shi YC (2021) A strategy for improving sinterability and electrical properties of gadolinium-doped ceria electrolyte using calcium oxide additive. J Rare Earth 39:728–733

    Article  CAS  Google Scholar 

  19. Lin G, Li S, Zheng Y, Ming Z, Guo L (2011) Effect of zinc oxide doping on the grain boundary conductivity of Ce0.8Ln0.2O1.9 ceramics (Ln= Y, Sm, Gd). J Power Sources 196:6131–6137

    Article  Google Scholar 

  20. Ge L, Li RF, He SC, Chen H, Guo LC (2013) Enhanced grain-boundary conduction in polycrystalline Ce0.8Gd0.2O1.9 by zinc oxide doping: Scavenging of resistive impurities. J Power Sources 230:161–168

    Article  CAS  Google Scholar 

  21. Ramasamy V, Vijayalakshmi G (2015) Effect of Zn doping on structural, optical and thermal properties of CeO2 nanoparticles. Superlattices Microstruct 85:510–521

    Article  CAS  Google Scholar 

  22. Rafique A, Ahmad MA, Shakir I, Ali A, Raza R (2020) Multioxide phase-based nanocomposite electrolyte (M@ SDC where M= Zn2+/Ba2+/La3+/Zr2+/Al3+) materials. Ceram Int 46:6882–6888

  23. Qiao Z, Xia C, Cai Y, Afzal M, Wang H, Qiao J, Zhu B (2018) Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. J Power Sources 392:33–40

    Article  CAS  Google Scholar 

  24. Hussain S, Li YP, Mustehsin A, Ali A, Thebo KH, Ali Z, Hussain S (2021) Synthesis and characterization of ZnO/samarium-doped ceria nanocomposites for solid oxide fuel cell applications. Ionics 27:4849–4857

    Article  CAS  Google Scholar 

  25. Wang SF, Yeh CT, Wang YR, Wu YC (2013) Characterization of samarium-doped ceria powders prepared by hydrothermal synthesis for use in solid state oxide fuel cells. J Mater Res Technol 2:141–148

    Article  CAS  Google Scholar 

  26. Ramesh S, Raju KCJ, Reddy CV (2011) Synthesis and characterization of co-doped ceria ceramics by sol-gel method. Trans Ind Ceram Soc 70:143–147

    Article  CAS  Google Scholar 

  27. Wang DJ, Zhou C, Zhu DC (2017) Nanosized CeO2 particles obtained by mechanical solid-state reaction combined with Sol-Gel method. Trans Indian Inst Met 70:2667–2672

    Article  CAS  Google Scholar 

  28. Balestrieri M, Colis S, Gallart M, Schmerber G, Dinia A (2015) Photoluminescence properties of rare earth (Nd, Yb, Sm, Pr)-doped CeO2 pellets prepared by solid-state reaction. J Mater Chem 3:7014–7021

    Article  CAS  Google Scholar 

  29. Montoya JA, Romero-Pascual E, Gimon C, Del Angel P, Monzón A (2000) Methane reforming with CO2 over Ni/ZrO2–CeO2 catalysts prepared by sol–gel. Catal Today 63:71–85

    Article  CAS  Google Scholar 

  30. Xie YM, Xiao J, Liu DD, Liu J, Yang CH (2015) Electrolysis of carbon dioxide in a solid oxide electrolyzerwith silver-gadolinium-doped Ceria cathode. J Electrochem Soc 162:F397–F402

    Article  CAS  Google Scholar 

  31. Liu J, Su WH, Lü Z, Ji Y, Pei L, Liu W, He TM (2004) A rapid method forsealing solid oxide fuel cells with metal conductive glue. Chinese Patent No. ZL 2(1):33049

    Google Scholar 

  32. Tang YB, Liu J (2010) Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells. Int J Hydrogen Energy 35:11188–11193

    Article  CAS  Google Scholar 

  33. Xiao J, Han QL, Yu FY, Zhang YJ, Wu H, Li X, Zeng XY, Dong P, Zhang YJ, Liu J (2018) Co-precipitation synthesis of alumina doped yttria stabilized zirconia. J Alloys Compd 731:1080–1088

    Article  CAS  Google Scholar 

  34. Lei LB, Bai YH, Liu J (2014) Ni-based anode-supported Al2O3-doped-Y2O3-stabilized ZrO2 thin electrolyte solid oxide fuel cells with Y2O3-stabilized ZrO2 buffer layer. J Power Sources 248:1312–1319

    Article  CAS  Google Scholar 

  35. Liu Y, Bai YH, Liu J (2011) (Ni0.75Fe0.25–xMgO) YSZ anode for direct methane solid-oxide fuel cells. J Power Sources 196:9965–9969

    Article  CAS  Google Scholar 

  36. Lei LB, Bai YH, Liu Y, Liu J (2015) An investigation on dip‐coating technique for fabricating anode‐supported solid oxide fuel cells. Int J Appl Ceram Technol 12:351–357

  37. Chen YH, Wei YJ, Zhong HH, Gao JF, Liu XQ, Meng GY (2007) Synthesis and electrical properties of Ln0.6Ca0.4FeO3−δ (LnPr, Nd, Sm) as cathode materials for IT-SOFC. Ceram Int 33:1237–1241

    Article  CAS  Google Scholar 

  38. Xia C, Wang B, Cai Y, Zhang W, Afzal M, Zhu B (2017) Electrochemical properties of LaCePr-oxide/K2WO4 composite electrolyte for low-temperature SOFCs. Electrochem Commun 77:44–48

    Article  CAS  Google Scholar 

  39. Zhang L, Liu F, Brinkman K, Reifsnider KL, Virkar AV (2014) A study of gadolinia-doped ceria electrolyte by electrochemical impedance spectroscopy. J Power Sources 247:947–960

    Article  CAS  Google Scholar 

  40. Tuller HL (2000) Ionic conduction in nanocrystalline materials. Solid State Ionics 131:143–157

    Article  CAS  Google Scholar 

  41. Park K, Hwang HK (2011) Effect of Dy3+ on the Microstructure and Electrical Properties of Ce0.8Sm0.2−xDyxO1.9 (0 ≤ x ≤ 0.15) Electrolytes for IT-SOFC. J Fuel Cell Sci Tech 8:61011

  42. Tian N, Yu J, Deng Y, Li G, Zhang X (2016) Electrical properties of Ce0.85Sm0.15O1.925–Fe2O3 electrolytes for IT-SOFCs. J Alloys Compd 655:215–219

    Article  CAS  Google Scholar 

  43. Dan X, Liu X, Xu S, Yan D, Li P, Zhu C, Wang D, Su W (2011) Fabrication and performance of Ce0.85Sm0.15O1.925–Fe2O3 electrolytes in IT-SOFCs. Solid State Ionics 192:510–514

    Article  Google Scholar 

  44. Park SY, Cho PS, Lee SB, Park HM, Lee JH (2009) Improvement of grain-boundary conduction in SiO2-doped GDC by BaO addition. J Electrochem Soc 156:B891

    Article  CAS  Google Scholar 

  45. Yu FY, Xiao J, Lei LB, Cai WZ, Zhang YP, Liu J, Liu ML (2016) Effects of doping alumina on the electrical and sintering performances of yttrium-stabilized-zirconia. Solid State Ionics 289:28–34

    Article  CAS  Google Scholar 

  46. Wu H, Xiao J, Zeng X, Li X, Yang J, Zhou Y, Liu S, Dong P, Zhang Y, Liu J (2019) A high performance direct carbon solid oxide fuel cell–A green pathway for brown coal utilization. Appl Energy 248:679–687

  47. Dudek M, Tomczyk P, Socha R, Hamaguchi M (2014) Use of ash-free “Hyper-coal” as a fuel for a direct carbon fuel cell with solid oxide electrolyte. Int J Hydrogen Energy 39:12386–12394

Download references

Funding

This work was supported by the National Natural Foundation of China (NSFC, Grant No. 51904136), the Key Scientific Research Platforms and Projects of Colleges and Universities in Guangdong Province (No. 2018KQNCX237), Provincial College Students’ Innovation and Entrepreneurship Training Program (No. S202110582022), and the Surface Technology Institute of Jiaying University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Liu or Jie Xiao.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Qin, H., Li, M. et al. Direct synthesis of Ce0.8Sm0.2−xZnxO2−δ electrolyte by sol–gel for IT-SOFC. Ionics 28, 4675–4684 (2022). https://doi.org/10.1007/s11581-022-04677-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04677-2

Keywords

Navigation