Skip to main content
Log in

Pulse electrodeposition of Ti/Sn-SbOX/β-PbO2 anodes with high oxygen evolution activity in zinc electrowinning

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

To obtain PbO2 anodes with high oxygen evolution activity and long lifetimes in zinc electrowinning, Ti/Sn-SbOX/β-PbO2 composite electrodes were prepared by pulse electrodeposition. The impact of pulse parameters including pulse duration and duty cycle on the surface morphology, phase composition, and electrochemical performance of Ti/Sn-SbOX/β-PbO2 electrodes was systematically investigated. The electrochemical measurements and accelerated life tests suggested that the composite electrode prepared with a pulse duration of 300 ms exhibited the lowest oxygen evolution potential and longest service life. The crystal size of the PbO2 active layer along the (110), (101), and (211) planes decreased after decreasing the duty cycle. As a result, the PbO2 layer obtained under a pulse duration of 300 ms and 10% duty cycle displayed a small, dense, and uniform crystal size distribution. The oxygen evolution potential was 0.365 V lower than that of the electrode obtained under direct current model, and the accelerated life was increased by 24.4 h. These results provide a promising deposition method for the preparation of composite anode materials in zinc electrowinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chen BM, Wang SC, Liu JH, Huang H, Dong CS, He YP, Yan WK, Guo ZC, Xu RD, Yang HT (2018) Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/beta-PbO2 anode for zinc electrowinning. Corros Sci 144:136–144

    Article  CAS  Google Scholar 

  2. Zhang W, Ghali E, Houlachi G (2017) Review of oxide coated catalytic titanium anodes performance for metal electrowinning. Hydrometallurgy 169:456–467

    Article  CAS  Google Scholar 

  3. Devilliers D, Thi M, Mahé E, Dauriac V, Lequeux N (2004) Electroanalytical investigations on electrodeposited lead dioxide. J Electroanal Chem 573(2):227–239

    Article  CAS  Google Scholar 

  4. Ramamurthy AC (1982) Electrochemical nucleation and growth of lead dioxide on glassy carbon electrodes. J Electroanal Chem Interfacial Electrochem 135(2):243–255

    Article  CAS  Google Scholar 

  5. Lee J, Varela H, Uhm S, Tak Y (2000) Electrodeposition of PbO2 onto Au and Ti substrates. Electrochem Commun 2(9):646–652

    Article  CAS  Google Scholar 

  6. Velichenko AB, Amadelli R, Baranova EA, Girenko DV, Danilov FI (2002) Electrodeposition of Co-doped lead dioxide and its physicochemical properties. J Electroanal Chem 527(1):56–64

    Article  CAS  Google Scholar 

  7. Gilroy D, Stevens R (1980) The electrodeposition of lead dioxide on titanium. J Appl Electrochem 10(4):511–525

    Article  CAS  Google Scholar 

  8. Shi YH, Meng HM, Sun DB, Ni YL, Chen D (2007) Effect of SbOx+SnO2 intermediate layer on the properties of Ti-based MnO2 anode. Acta Phys Chim Sin 23(10):1553–1559

    Article  CAS  Google Scholar 

  9. Su F-h, Huang P (2012) Microstructure and tribological property of nanocrystalline Co-W alloy coating produced by dual-pulse electrodeposition. Mater Chem Phys 134(1):350–359

    Article  CAS  Google Scholar 

  10. Zhang W, Kong H, Lin H, Lu H, Huang W, Yin J, Lin Z, Bao J (2015) Fabrication, characterization and electrocatalytic application of a lead dioxide electrode with porous titanium substrate. J Alloy Compd 650:705–711

    Article  CAS  Google Scholar 

  11. Shmychkova O, Luk’Yanenko T, Amadelli R, Velichenko A (2013) Electrodeposition of Ce-doped PbO2. J Electroanal Chem 706(Complete):86–92

    Article  CAS  Google Scholar 

  12. Santos JEL, Antonio Quiroz M, Cerro-Lopez M, Chianca de Moura D, Martinez-Huitle CA (2018) Evidence for the electrochemical production of persulfate at TiO2 nanotubes decorated with PbO2. New J Chem 42(7):5523–5531

    Article  CAS  Google Scholar 

  13. Yang Y, Cheng YF (2013) Fabrication of Ni-Co-SiC composite coatings by pulse electrodeposition - effects of duty cycle and pulse frequency. Surf Coat Technol 216:282–288

    Article  CAS  Google Scholar 

  14. Andrade MAS Jr, Gromboni MF, Soares LL, Mascaro LH (2019) Double-pulse electrodeposition of CuGaS2 photovoltaic thin film. ChemElectroChem 6(12):2998–3001

    Article  CAS  Google Scholar 

  15. Guo H, Xu ZC, Qiao D, Wan D, Xu H, Yan W, Jin XL (2020) Fabrication and characterization of porous titanium-based PbO2 electrode through the pulse electrodeposition method: deposition condition optimization by orthogonal experiment. Chemosphere 261:128157

    Article  Google Scholar 

  16. Velichenko AB, Amadelli R, Gruzdeva EV, Luk’yanenko TV, Danilov FI (2009) Electrodeposition of lead dioxide from methanesulfonate solutions. J Power Sources 191(1):103–110

    Article  CAS  Google Scholar 

  17. Yang HT, Chen BM, Guo ZC, Liu HR, Zhang YC, Huang H, Xu RD, Fu RC (2014) Effects of current density on preparation and performance of Al/conductive coating/alpha-PbO2-CeO2-TiO2/beta-PbO2-MnO2-WC-ZrO2 composite electrode materials. Trans Nonferrous Met Soc China 24(10):3394–3404

    Article  CAS  Google Scholar 

  18. Ning HL, Xin YL, Xu LK, Du AL (2016) Properties of IrO2-Ta2O5 coated titanium anodes modified with graphene. Rare Metal Mater Eng 45(4):945–950

    Google Scholar 

  19. Xie X, Chang L, Chen B, Li J, Huang H, Guo Z, He Y (2021) Effects of coating precursor states on performance of titanium-based metal oxide coating anode for Mn electrowinning. Electrochim Acta 400:139459

    Article  CAS  Google Scholar 

  20. Chen BM, Liu JH, Wang SCA, Huang H, He YP, Guo ZC (2021) Preparation and electrochemical properties of a novel porous Ti/Sn-Sb-RuOx/beta-PbO2/MnO2 anode for zinc electrowinning. RSC Adv 11(31):19136–19146

    Article  CAS  Google Scholar 

  21. Hakimi F, Rashchi F, Ghalekhani M, Dolati A, Astaraei FR (2021) Effect of a synthesized pulsed electrodeposited Ti/PbO2-RuO2 nanocomposite on zinc electrowinning. Ind Eng Chem Res 60(31):11737–11748

    Article  CAS  Google Scholar 

  22. Pillai IS, Gupta AK (2015) Potentiostatic electrodeposition of a novel cost effective PbO2 electrode: degradation study with emphasis on current efficiency and energy consumption. J Electroanal Chem 749:16–25

    Article  Google Scholar 

  23. Chen X, Guo HJ, Luo SL, Wang ZX, Li XH (2017) Effect of SnO2 intermediate layer on performance of Ti/SnO2/MnO2 electrode during electrolytic-manganese process. Trans Nonferrous Met Soc China 27(6):1417–1422

    Article  CAS  Google Scholar 

  24. Yao Y, Yu N, Jiao L, Zhao C (2016) Preparation and electrocatalytic property of lead dioxide prepared by pulse electrodeposition with different pulse current density. Russ J Electrochem 52(2):163–168

    Article  CAS  Google Scholar 

  25. Allahyarzadeh MH, Ashrafi A, Golgoon A, Roozbehani B (2016) Effect of pulse plating parameters on the structure and properties of electrodeposited Ni-Mo films. Mater Chem Phys 175:215–222

    Article  CAS  Google Scholar 

  26. Yao Y, Cui L, Jiao L, Chen X, Yu N, Dong H (2016) Effects of duty cycle on the preparation and property of PbO2-CeO2 nanocomposite electrodes. J Solid State Electrochem 20(3):725–731

    Article  CAS  Google Scholar 

  27. Wang XB, Xu RD, Feng SY, Yu BH, Chen BM (2020) Alpha(beta)-PbO2 doped with Co3O4 and CNT porous composite materials with enhanced electrocatalytic activity for zinc electrowinning. RSC Adv 10(3):1351–1360

    Article  CAS  Google Scholar 

  28. Vogt H (1994) Note on a method to interrelate inner and outer electrode areas. Electrochim Acta 39(13):1981–1983

    Article  CAS  Google Scholar 

  29. Trasatti S (1991) Structure of the metal/electrolyte solution interface: new data for theory. Electrochim Acta 36(11–12):1659–1667

    Article  CAS  Google Scholar 

  30. Chen Y, Hong L, Xue H, Han W, Wang L, Sun X, Li J (2010) Preparation and characterization of TiO2-NTs/SnO2-Sb electrodes by electrodeposition. J Electroanal Chem 648(2):119–127

    Article  CAS  Google Scholar 

  31. Lassali TAF, Boodts JFC, Bulhoes LOS (2000) Faradaic impedance investigation of the deactivation mechanism of Ir-based ceramic oxides containing TiO2 and SnO2. J Appl Electrochem 30(5):625–634

    Article  CAS  Google Scholar 

  32. Souza FL, Aquino JM, Irikura K, Miwa DW, Rodrigo MA, Motheo AJ (2014) Electrochemical degradation of the dimethyl phthalate ester on a fluoride-doped Ti/beta-PbO2 anode. Chemosphere 109:187–194

    Article  CAS  Google Scholar 

  33. Chang L, Chen B, Qiao H, Huang H, Guo Z, He Y, Xu R, Xionghui X (2021) Study of the effects of pretreatment processing on the properties of metal oxide coatings on Ti-based sheet. J Electrochem Soc 168(3):033501

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Natural Science Foundation of China (No. 52064028, 22002054, 51504111, and 51564029), Technology Innovation Talents Project of Yunnan Province (No. 2019HB111), Key project of Yunnan Provincial Basic Research Program (No. 2021FA016), Science and Technology Achievement Transfer and Transformation Project (No. 202107AC110009), and Analysis and Testing Foundation of Kunming University of Science and Technology (2021T20200004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Buming Chen or Yapeng He.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Chang, L., Chen, B. et al. Pulse electrodeposition of Ti/Sn-SbOX/β-PbO2 anodes with high oxygen evolution activity in zinc electrowinning. Ionics 28, 3557–3569 (2022). https://doi.org/10.1007/s11581-022-04584-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04584-6

Keywords

Navigation