Skip to main content
Log in

Synthesis, structural, and electrochemical properties of boron-based ionic liquid

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present work, a new boron-based room-temperature ionic liquid (BBRTIL) is reported. An ionic liquid based on the boron cation was synthesized by an easy metathesis procedure yielding clean products. The composition, thermal behavior, physical, and electrochemical properties of the BBRTIL were identified by nuclear magnetic resonance spectra (NMR), Fourier transform infrared (FTIR) thermogravimetric analysis (TGA), linear sweep voltammetry (LSV), and cyclic voltammetry (CV), respectively. NMR and FTIR have confirmed the structure formation of 0.3–0.4-mm-sized B2O3-based BBRTIL. Furthermore, the correlation between the electrochemical stability and the identified electrolyte equilibrium species was investigated via voltammetry. This procedure, in the future, could be an original alternative to the deposition of elemental boron through easy, one-step synthesis from high-temperature molten salt electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Holbrey JD, Seddon KR (1999) Ionic liquids. Clean Prod Processes 1(4):223–236

    Google Scholar 

  2. MacFarlane D, Pringle JM, Howlett PC, Forsyth M (2010) Ionic liquids and reactions at the electrochemical interface. Phys Chem Chem Phys 12:1659–1669

    Article  CAS  Google Scholar 

  3. Petkovic M, Seddon K, Pereira C (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383–1403

    Article  CAS  Google Scholar 

  4. Ranke J, Stolte S, Stoermann R, Arning J, Jastorff B (2007) Design of sustainable chemical products: the example of ionic liquids. Chem Rev 107:2183–2206

    Article  CAS  Google Scholar 

  5. Reed CA (1998) Carboranes: a new class of weakly coordinating anions for strong electrophiles, oxidants, and superacids. Acc Chem Res 31(3):133–139

    Article  CAS  Google Scholar 

  6. Bell RT, Strange NA, Leick N, Stavila V, Bowden ME, Autrey TS, Gennett T (2021) Mg(BH4)2-based hybrid metal-organic borohydride system exhibiting enhanced chemical stability in melt. ACS Appl Energy Mater 4(2):1704–1713

    Article  CAS  Google Scholar 

  7. Panja SK, Saha S (2013) Recyclable, magnetic ionic liquid bmim[FeCl4]-catalyzed, multicomponent, solvent-free, green synthesis of quinazolines. RSC Adv 3(34):14495–14500

    Article  CAS  Google Scholar 

  8. Lombardo L, Yang H, Züttel A (2018) Study of borohydride ionic liquids as hydrogen storage materials. J Energy Chem 33:17–21

    Article  Google Scholar 

  9. Ghosh S, Singh T (2019) Role of ionic liquids in organic-inorganic metal halide perovskite solar cells efficiency and stability. Nano Energy S2211–2855(19):30528–30532

    Google Scholar 

  10. Wang K, Zhang Y, Chand D, Parrish DA, Shreeve JM (2012) Boronium-cation-based ionic liquids as hypergolic fluids. Chem-A European J 18(52):16931–16937

    Article  CAS  Google Scholar 

  11. Kar M, Tutusaus O, MacFarlane DR, Mohtadi R (2019) Novel and versatile room-temperature ionic liquids for energy storage. Energy Environ Sci 12:566–571

    Article  CAS  Google Scholar 

  12. Dziedzic RM, Waddington MA, Lee SE, Kleinsasser J, Plumley JB, Ewing WC, Spokoyny AM (2018) Reversible silver electrodeposition from boron cluster ionic liquid (BCIL) electrolytes. ACS Appl Mater Interfaces 10(8):6825–6830

    Article  CAS  Google Scholar 

  13. Fareghi-Alamdari R, Ghorbani-Zamani F, Shekarriz M (2015) Surface passivation of bare boron nanoparticles using new dicyanamide-based dicationic ionic liquid. Energy Fuels 30(1):551–559

    Article  Google Scholar 

  14. Tutusaus O, Mohtadi R, Arthur TS, Mizuno F, Nelson EG, Sevryugina YV (2015) An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew Chem Int Ed 54(27):7900–7904

    Article  CAS  Google Scholar 

  15. Bürchner M, Erle AM, Scherer H, Krossing I (2012) Synthesis and characterization of boronate ionic liquids (BILs). Chem-A Eur J 18(8):2254–2262

    Article  Google Scholar 

  16. Hanst PL, Early VH, Klemperer W (1965) Infrared spectrum and molecular structure of B2O3. J Chem Phys 42(3):1097–1104

    Article  CAS  Google Scholar 

  17. Piers WE, Bourke SC, Conroy KD (2005) Borinium, borenium, and boronium ions: synthesis, reactivity, and applications. Angew Chem Int Ed 44:5016–5036

    Article  CAS  Google Scholar 

  18. Kolle P, Noth H (1985) The chemistry of borinium and borenium ions. Chem Rev 85:399–418

    Article  Google Scholar 

  19. Davis JH Jr et al (2013) Boronium based ionic liquids: salts of boron centered cations as promising salts for electrochemical applications. ECS Trans 50:293

    Article  Google Scholar 

  20. Guo Y, Zhang F, Yang J, Wang F, NuLi Y, Hirano S (2012) Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy Environ Sci 5:9100–9106

    Article  CAS  Google Scholar 

  21. Polyakova LP, Bukatova GA, Polyakov EG, Christensen E, von Bjerrum BJH (1996) Electrochemical behavior of boron in LiF-NaF-KF- melts. J Electrochem Soc 143(10):3178

    Article  CAS  Google Scholar 

  22. Polyakova LP, Bukatova GA, Polyakov EG, Cristensen E, von Barner JH, Bjerrum NJ (1995) Cathodic processes during the boron reduction in fluoride melts. Ehlektrokhimiya 31(12):1348–1353

    Google Scholar 

  23. Brookes HC, Gibson PS, Hills GJ, Narayan N, Wigley DA (1976) The electrochemistry of the boriding of ferrous metal surfaces. Transactions of the IMF 54(1):191–195

    Article  Google Scholar 

  24. Bukatova GA, Kuznetsov SA, Gaune-Escard M (2007) Electrochemical synthesis of rare-earth metal (Eu, Nd) borides in molten salts. Russ J Electrochem 43:929–935

    Article  CAS  Google Scholar 

  25. Effenberger H, Lengauer CL, Parthé E (2001) Trigonal B2O3 with Higher Space-Group Symmetry: Results of a Reevaluation. In: Monatshefte für Chemie, 132(12):1515-1517. https://doi.org/10.1007/s007060170008

  26. Karadağ A, Destegul A (2013) N-(2-hydroxyethyl)-ethylenediamine-based ionic liquids: synthesis, structural characterization, thermal, dielectric and catalytic properties. J Mol Liq 177:369–375

    Article  Google Scholar 

  27. Shah FU, Glavatskih S, Dean PM, MacFarlane DR, Forsyth M, Antzutkin ON (2012) Halogen-free chelated orthoborate ionic liquids and organic ionic plastic crystals. J Mater Chem 22(14):6928

    Article  CAS  Google Scholar 

  28. Dean PM, Pringle JM, MacFarlane DR (2010) Structural analysis of low melting organic salts: perspectives on ionic liquids. Phys Chem Chem Phys 12(32):9144

    Article  CAS  Google Scholar 

  29. Nemukhin AV, Weinhold F (1993) Boron oxides: ab initio studies with natural bond orbital analysis. J Chem Phys 98(2):1329

    Article  CAS  Google Scholar 

  30. Myat H, Myo L, Pho K, Sein H (2006) Infrared Spectroscopic Study on the Structure of Ag2O. B2O3 Glasses. J Myanmar Acad Arts Sci. Vol. IV. No. 2

  31. Bilgiç G, Şahin M, Kaplan H (2020) A System Design for Large Scale Production of Elemental Boron by Electrochemical Deposition. J Electrochem Soc. 167(16)

  32. Horopanitis EE, Perentzis G, Pavlidou E et al (2003) Electrical properties of lithiated boron oxide fast-ion conducting glasses. Ionics 9:88–94

  33. Concha BM, Chatenet M, Maillard F, Lima TEA, FHB, Lima RB, (2010) In situ infrared (FTIR) study of the mechanism of the borohydride oxidation reaction. Phys Chem Chem Phys 12(37):11507

    Article  CAS  Google Scholar 

  34. Pascuta P, Borodi G, Bosca M, Pop L, Rada S, Culea E (2009) Preparation and structural characterization of some Fe2O3- B2O3-ZnO glasses and glass ceramics. J Phys Conf Ser 182(1):012072

    Article  Google Scholar 

  35. Aghili S, Panjepour M, Meratian M (2018) Kinetic analysis of formation of boron trioxide from thermal decomposition of boric acid under non-isothermal conditions. J Therm Anal Calorim 131:2443–2455

    Article  CAS  Google Scholar 

  36. Jadhav HS, Cho MS, Kalubarme RS, Lee JS, Jung KN, Shin KH, Park CJ (2013) Influence of B2O3 addition on the ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 glass ceramics. J Power Sources 241:502–508

    Article  CAS  Google Scholar 

  37. Yuan WL, Yang X, He L, Xue Y, Qin S, Tao GH (2018) Viscosity, conductivity, and electrochemical property of dicyanamide ionic liquids. Front Chem 6:59

    Article  Google Scholar 

  38. Devyatkin SV, Kaptay G (2002) Physical, chemical, and electrochemical behavior of boron oxide in cryolite alumina melts. Russ J Appl Chem 75(4):5653568

    Google Scholar 

  39. Kuznetsov SA (1996) Electroreduction of boron in chloride-fluoride melts. Elektrokhimiya 32(7):829–835

    Google Scholar 

  40. Makyta M, Matiašovský K, Fellner (1984) Mechanism of the cathode process in the electrolytic boriding in molten salts. Electrochim Acta 29(12):1653–1657

    Article  CAS  Google Scholar 

  41. Segers L, Fontana A, Winand R (1991) Electrochemical boriding of iron in molten salts. Electrochim Acta 36(1):41–47

    Article  CAS  Google Scholar 

  42. Matsuda H, Ayabe Y (1955) The theory of the cathode-ray polarography of Randles-Sevcik, Zeitschrift fuer Elektrochmie and Angewandte Physikalische. Chemie 59:494–503

    CAS  Google Scholar 

  43. Delahay P (1954) New instrumental methods in electrochemistry: theory, instrumentation, and applications to analytical and physical chemistry with a chapter on high-frequency methods by Charles N. Reilley. Foreword by I.M. Kolthoff. Published in New York (N.Y.): Interscience publishers.

Download references

Acknowledgements

The authors of this study thank the Technical Research Council and Scientific of Turkey (TUBİTAK, Career Development Program 3501; Grant KBAG-120Z175) for financial support. Also, the authors thank everyone who provided assistance, critical comments, and suggestions during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülbahar Bilgiç.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgiç, G., Korkmaz, N., Şahin, M. et al. Synthesis, structural, and electrochemical properties of boron-based ionic liquid. Ionics 28, 3289–3300 (2022). https://doi.org/10.1007/s11581-022-04575-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04575-7

Keywords

Navigation