Skip to main content

Advertisement

Log in

Carbon-confined Mo3Nb2O14 porous microspheres for high-performance lithium storage

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In recent years, 2D intercalated pseudocapacitance MoO3 and Nb2O5 have been widely investigated, while 3D Mo-Nb–O materials have rarely been discussed. Here, we synthesized Mo3Nb2O14-B by a simple ball-milling method and further prepared Mo3Nb2O14-L with advanced energy storage properties by a solvothermal method, where the abundant nanopore channels and in situ carbon encapsulation led to fast Li-ion diffusion and excellent structural stability. It performs well in half-cell performance tests, including high reversible capacity (461 mAh g−1 at 0.1C), initial coulomb efficiency of 88.4%, excellent cycling performance (4.4% capacity loss in 600 cycles at 10 C), and significant intercalation mimetic capacitive contribution (89.2% at 1.0 mV s). All these advantages indicate that Mo3Nb2O14-L has great potential for use as anode material for lithium-ion batteries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li J, Cai Y, Wu H, Yu Z, Yan X, Zhang Q, Gao TZ, Liu K, Jia X, Bao Z (2021) Polymers in lithium-ion and lithium metal batteries. Adv Energy Mater 15:2003239

    Article  Google Scholar 

  2. Li M, Lu J, Chen Z, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30(18):1800561

    Article  Google Scholar 

  3. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457

    Article  CAS  Google Scholar 

  4. Jeong G, Kim YU, Kim H, Kim YJ, Sohn HJ (2011) Prospective materials and applications for Li secondary batteries. Energy Environ Sci 4:1986–2002

    Article  CAS  Google Scholar 

  5. Zackrisson M, Avellan R, Orlenius R (2010) Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles – critical issues. J Clean Prod 18:1519–1529

    Article  CAS  Google Scholar 

  6. Nam KT, Kim D, Yoo PJ, Chiang C, Meethong N, Hammond PT, Chiang Y, Belcher AM (2018) Virus-enabled synthesis and assembly battery electrodes. Science 312:885–896

    Article  Google Scholar 

  7. Zhao Z, Sun M, Chen W, Liu Y, Zhang L, Dongfang N, Ruan Y, Zhang J, Wang P, Dong L (2018) Sandwich, vertical‐channeled thick electrodes with high rate and cycle performance. Adv Funct Mater 16:180916

  8. Ulaganathan M, Aravindan V, Yan Q, Madhavi S, Skyllas-Kazacos M, Lim TM (2016) Recent advancements in all-vanadium redox flow batteries. Adv Mater Interfaces 3:1500309

    Article  Google Scholar 

  9. Jing T, Xu B, Yang Y, Li M, Gao Y (2020) Organogel electrode enables highly transparent and stretchable triboelectric nanogenerators of high power density for robust and reliable energy harvesting. Nano Energy 78:105373

  10. Balogun, Muhammad-Sadeeq, Yang, Hao, Luo, Qiu, Weitao, Huang, Yongchao, Liu (2018) Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes. Energy Environ Sci EES11:1859–1869

  11. Li B, Wang Y, Yang S (2018) A material perspective of rechargeable metallic lithium anodes. Adv Energy Mater 8:1702296

    Article  Google Scholar 

  12. Weili L, Hanqian Z, Xuebin Y (2019) Recent progress in phosphorus based anode materials for lithium/sodium ion batteries. Energy Storage Materials 16:290–332

    Article  Google Scholar 

  13. Luo W, Chen X, Xia Y, Chen M, Wang L, Wang Q, Li W, Yan J (2017) Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv Energy Mater 1701083.

  14. Huang Z, Hasa I, Passerini S (2018) Beyond insertion for na-ion batteries: nanostructured alloying and conversion anode materials. Adv Energy Mater 8:1870082

    Article  Google Scholar 

  15. Lao M, Zhang Y, Luo W, Yan Q, Sun W, Dou SX (2017) Alloy-based anode materials toward advanced sodium-ion batteries. Adv Mater 29:1700622

    Article  Google Scholar 

  16. Casimir A, Zhang H, Ogoke O, Amine JC, Wu G (2016) Silicon-based anode for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation. Nano Energy 27:359–376

    Article  CAS  Google Scholar 

  17. Park H, Choi S, Lee SJ, Cho YG, Hwang G, Song HK, Choi NS, Park S (2016) Design of an ultra-durable silicon-based battery anode material with exceptional high-temperature cycling stability. Nano Energy 26:192–199

    Article  CAS  Google Scholar 

  18. Yuxin, Tang, Yanyan, Zhang, Xianhong, Rui, Dianpeng, Qi, Yifei, Luo (2015) Conductive inks based on a lithium titanate nanotube gel for high-rate lithium-ion batteries with customized configuration. Adv Mater 28:1567–1576

  19. Rodriguez EF, Xia F, Chen D, Hollenkamp AF, Caruso RA (2016) N-doped Li4Ti5O12 nanoflakes derived from 2D protonated titanate for high performing anodes in lithium ion batteries. Journal of Materials Chemistry A 4:7772–7780

    Article  CAS  Google Scholar 

  20. Wang S, Quan W, Zhu Z, Yang Y, Liu Q, Ren Y, Zhang X, Xu R, Hong Y, Zhang Z (2017) Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries. Nat Commun 8:627–634

    Article  Google Scholar 

  21. Liu F, Cheng X, Xu R, Wu Y, Jiang Y, Yu Y (2018) Binding sulfur-doped Nb2O5 hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage. Adv Funct Mater 28:1800394

    Article  Google Scholar 

  22. Zhang CJ, Kim SJ, Ghidiu M, Zhao MQ, Barsoum MW, Nicolosi V, Gogotsi Y (2016) Layered orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx hierarchical composites for high performance Li-ion batteries. Adv Funct Mater 26:4143–4151

    Article  CAS  Google Scholar 

  23. Feng J, Yang Z, Yang D, Ren X, Zhu X, Jin Z, Zi W, Wei Q, Liu S (2017) E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy 36:1–8

    Article  Google Scholar 

  24. Yang H, Xu R, Gong Y, Yao Y, Gu L, Yu Y (2018) An interpenetrating 3D porous reticular Nb2O5 @carbon thin film for superior sodium storage. Nano Energy 48:448–455

    Article  CAS  Google Scholar 

  25. Kun; Tang; Xiaoke; Mu; Peter; A.; van; Aken; Yan; Yu (2013) "Nano-pearl-string" TiNb2O7 as anodes for rechargeable lithium batteries. Adv Energy Mater 3:49–53

  26. Guo B, Yu X, Sun X, Chi G, Qiao M (2014) A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage. Energy Environ Sci 7:2220–2226

  27. Xia, Lu, Zelang, Jian, Zheng, Fang, Lin, Gu, Yong-Sheng, Hu (2011) Atomic-scale investigation on lithium storage mechanism in TiNb2O7. Energy Environ Sci 4:2638–2644

  28. Griffith Kent J, Wiaderek Kamila M, Cibin Giannantonio, Marbella Lauren (2018) Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559:556–563

  29. Meng A, Zhang L, Cheng B, Yu J (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater 31:1807660

    Article  Google Scholar 

  30. Zheng R, Qian S, Cheng X, Yu H, Peng N, Liu T, Zhang J, Xia M, Zhu H, Shu J (2019) FeNb11O29 nanotubes: superior electrochemical energy storage performance and operating mechanism. Nano Energy 58:399–409

    Article  CAS  Google Scholar 

  31. Preefer MB, Saber M, Wei Q, Bashian NH, Bocarsly JD, Zhang W, Lee G, Milamguerrero JA, Howard ES, Vincent RC (2020) Multielectron redox and insulator-to-metal transition upon lithium insertion in the fast-charging, Wadsley-Roth Phase PNb9O25. Chem Mater 32:4553–4563

    Article  CAS  Google Scholar 

  32. Peng H, Luo S, Wei K, Zhou J, Gao F (2020) A new type of niobium phosphate compositing carbon nanotube used as anode material for high-rate lithium storage. ACS Sustainable Chemistry & Engineering 9:216–223

    Google Scholar 

  33. Kim HS, Cook JB, Hao L, Ko J, Dunn B (2016) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater 16:454–460

    Article  Google Scholar 

  34. Choi C, Ashby DS, Butts DM, Deblock RH, Dunn B (2019) Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater 5:5–19

    Article  Google Scholar 

  35. Chen Z, Cheng X, Ye W, Zheng R, Zhu H, Yu H, Long N, Shui M, Shu J (2019) AgNb13O33: a new anode material with high energy storage performance - ScienceDirect. Chem Eng J 366:246–253

    Article  CAS  Google Scholar 

  36. Liu J, Han D, Wang X, Cai H, Jia L, Wang J, Shi H, Guo Q, Fan X (2018) The photoelectrochemical properties of Sn2Nb2O7 photoanode. J Alloys Compd 773:1033–1039

    Article  Google Scholar 

  37. Yi, Ting-Feng, et al. (2020) "Efforts on enhancing the Li-ion diffusion coefficient and electronic conductivity of titanate-based anode materials for advanced Li-ion batteries." Energy Storage Materials 26:165–197

  38. Yi TF, Sari HMK, Li X, Wang F, Zhu YR, Hu J, ... & Li X (2021) A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors. Nano Energy 85:105955

  39. He SR, Zou JP, Chen LB, Chen YJ (2021) A nanostructured Ni/T-Nb2O5@ carbon nanofibers as a long-life anode material for lithium-ion batteries. Rare Met 40(2):374–382

    Article  CAS  Google Scholar 

  40. Yi TF, Pan JJ, Wei TT, Li Y, & Cao G (2020) NiCo2S4-based nanocomposites for energy storage in supercapacitors and batteries. Nano Today 33:100894

  41. Sun RX, Yue Y, Cheng XF, Zhang K, Jin SY, Liu GY, ... & Liu XD (2021)Ionic liquid-induced ultrathin and uniform N-doped carbon-wrapped T-Nb2O5 microsphere anode for high-performance lithium-ion battery.Rare Met 40(11):3205-3214

  42. Zhou Y, Liu K, Zhou Y, Ni JH, Dou AC, Su MR, Liu YJ (2020) Synthesis of a novel hexagonal porous TT-Nb2O5 via solid state reaction for high-performance lithium ion battery anodes. Journal of Central South University 27(12):3625–3636

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faming Gao.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 989 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hei, P., Zhao, Y., Luo, S. et al. Carbon-confined Mo3Nb2O14 porous microspheres for high-performance lithium storage. Ionics 28, 3197–3205 (2022). https://doi.org/10.1007/s11581-022-04570-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04570-y

Keywords

Navigation