Skip to main content

Advertisement

Log in

Biomass-derived high value-added porous carbon as the interlayer material for advanced lithium–sulfur batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, an intrinsic porous light biomass is utilized as an environmentally friendly precursor to prepare high value-added porous carbon as the interlayer material for advanced lithium sulfur (Li–S) batteries. Various material characterization methods are utilized to investigate the obtained porous carbon and found that it exhibits three-dimensional interconnected porous structures with the characteristics of defective graphite structure. Its specific surface calculated by BET method is 300.4 m2 g−1. It can productively curb polysulfide shuttle and boost the cycling performance and rate capability of the battery. The first capacity of Li–S battery with this porous carbon is 905.6 mAh g−1 at 1 C, and it maintains 464.8 mAh g−1 even over 500 cycles. More significantly, special microstructures derived from natural growth avoid complicated preparation processes, and it opens up new alternatives for Li–S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu F, Maier J, Yu Y (2020) Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 49:1569–1614

    Article  CAS  Google Scholar 

  2. Armand M, Axmann P, Bresser D, Copley M, Edström K, Ekberg C, Guyomard D, Lestriez B, Novák P, Petranikova M, Porcher W, Trabesinger S, Wohlfahrt-Mehrens M, Zhang H (2020) Lithium-ion batteries-current state of the art and anticipated developments. J Power Sources 479:228708

    Article  CAS  Google Scholar 

  3. Huang L, Li J, Liu B, Li Y, Shen S, Deng S, Lu C, Zhang W, Xia Y, Pan G, Wang X, Xiong Q, Xia X, Tu J (2020) Electrode design for lithium-sulfur batteries: problems and solutions. Adv Funct Mater 30:1910375

    Article  CAS  Google Scholar 

  4. Qi C, Li Z, Sun C, Chen C, Jin J, Wen Z (2020) Cobalt phosphide nanoflake-induced flower-like sulfur for high redox kinetics and fast ion transfer in lithium-sulfur batteries. ACS Appl Mater Interfaces 12:49626–49635

    Article  CAS  Google Scholar 

  5. Sun Z, Vijay S, Heenen HH, Eng AYS, Tu W, Zhao Y, Koh SW, Gao P, Seh ZW, Chan K, Li H (2020) Catalytic polysulfide conversion and physiochemical confinement for lithium–sulfur batteries. Adv Energy Mater 10:1904010

    Article  CAS  Google Scholar 

  6. Jana M, Xu R, Cheng XB, Yeon JS, Park JM, Huang JQ, Zhang Q, Park HS (2020) Rational design of two-dimensional nanomaterials for lithium–sulfur batteries. Energy Environ Sci 13:1049–1075

    Article  CAS  Google Scholar 

  7. Li F, Liu Q, Hu J, Feng Y, He P, Ma J (2019) Recent advances in cathode materials for rechargeable lithium–sulfur batteries. Nanoscale 11:15418–15439

    Article  CAS  Google Scholar 

  8. Li T, Bai X, Gulzar U, Bai Y, Capiglia C, Deng W, Zhou X, Liu Z, Feng Z, Zaccaria RP (2019) A comprehensive understanding of lithium-sulfur battery technology. Adv Funct Mater 29:1901730

    Article  Google Scholar 

  9. Yan R, Oschatz M, Wu F (2020) Towards stable lithium-sulfur battery cathodes by combining physical and chemical confinement of polysulfides in core-shell structured nitrogen-doped carbons. Carbon 161:162–168

    Article  CAS  Google Scholar 

  10. Fu A, Wang C, Pei F, Cui J, Fang X, Zheng N (2019) Recent advances in hollow porous carbon materials for lithium–sulfur batteries. Small 15:1804786

    Article  Google Scholar 

  11. Zhu Y, Li J, Liu J (2017) A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium-sulfur battery. J Power Sources 351:17–25

    Article  CAS  Google Scholar 

  12. Fan Z, Ding B, Zhang T, Lin Q, Malgras V, Wang J, Dou H, Zhang X, Yamauchi Y (2019) Solid/solid interfacial architecturing of solid polymer electrolyte–based all-solid-state lithium–sulfur batteries by atomic layer deposition. Small 15:1903952

    Article  CAS  Google Scholar 

  13. Tao X, Liu Y, Liu W, Zhou G, Zhao J, Lin D, Zu C, Sheng O, Zhang W, Lee HW, Cui Y (2017) Solid-state lithium−sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett 17:2967–2972

    Article  CAS  Google Scholar 

  14. Su YS, Manthiram A (2012) Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 3:1166

    Article  Google Scholar 

  15. Gu X, Tong C, Lai C, Qiu J, Huang X, Yang W, Wen B, Liu L, Hou Y, Zhang S (2015) A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li–S batteries. J Mater Chem A 3:16670–16678

    Article  CAS  Google Scholar 

  16. Zhu L, Jiang H, Ran W, You L, Yao S, Shen X, Tu F (2019) Turning biomass waste to a valuable nitrogen and boron dual-doped carbon aerogel for high performance lithium-sulfur batteries. Appl Surf Sci 489:154–164

    Article  CAS  Google Scholar 

  17. Cha E, Patel MD, Park J, Hwang J, Prasad V, Cho K, Choi W (2018) 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat Nanotechnol 13:337–344

    Article  CAS  Google Scholar 

  18. Chen W, Qian T, Xiong J, Xu N, Liu X, Liu J, Zhou J, Shen X, Yang T, Chen Y, Yan C (2017) A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries. Adv Mater 29:1605160

    Article  Google Scholar 

  19. Yang J, Chen F, Li C, Bai T, Long B, Zhou X (2016) A free-standing sulfur-doped microporous carbon interlayer derived from luffa sponge for high performance lithium–sulfur batteries. J Mater Chem A 4:14324–14333

    Article  CAS  Google Scholar 

  20. Zhu L, Jiang H, Yang Q, Yao S, Shen X, Tu F (2019) An effective porous activated carbon derived from puffed corn employed as the separator coating in a lithium–sulfur battery. Energy Technol 7:1900752

    Article  CAS  Google Scholar 

  21. Zhu L, You L, Zhu P, Shen X, Yang L, Xiao K (2018) High performance lithium−sulfur batteries with a sustainable and environmentally friendly carbon aerogel modified separator. ACS Sustainable Chem Eng 6:248–257

    Article  CAS  Google Scholar 

  22. Li Z, Xu J, Sun D, Lin T, Huang F (2020) Nanoporous carbon foam for water and air purification. ACS Appl Nano Mater 3:1564–1570

    Article  CAS  Google Scholar 

  23. Somsesta N, Sricharoenchaikul V, Aht-Ong D (2020) Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: equilibrium and kinetic studies. Mater Chem Phys 240

    Article  CAS  Google Scholar 

  24. Zhu L, Zhu P, You L, Li S (2019) Bamboo shoot skin: turning waste to a valuable adsorbent for the removal of cationic dye from aqueous solution. Clean Technol Envir 21:81–92

    Article  CAS  Google Scholar 

  25. Gu X, Lai C, Liu F, Yang W, Hou Y, Zhang S (2015) A conductive interwoven bamboo carbon fiber membrane for Li-S batteries. J Mater Chem A 3:9502–9509

    Article  CAS  Google Scholar 

  26. Xiang KX, Zhang YP, Xue J (2017) Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium-sulfur batteries. Chemsuschem 10:1803–1812

    Article  Google Scholar 

  27. Wang Z, Zhang X, Liu X, Zhang Y, Zhao W, Li Y, Qin C, Bakenov Z (2020) High specific surface area bimodal porous carbon derived from biomass reed flowers for high performance lithium-sulfur batteries. J Colloid Interf Sci 569:22–33

    Article  CAS  Google Scholar 

  28. Li H, Jin Q, Li D, Huan X, Liu Y, Feng G, Zhao J, Yang W, Wu Z, Zhong B, Guo X, Wang B (2020) Mo2C-embedded carambola-like N, S-rich carbon framework as the interlayer material for high-rate lithium−sulfur batteries in a wide temperature range. ACS Appl Mater Interfaces 12:22971–22980

    Article  CAS  Google Scholar 

  29. Wang S, Li X, Zhang Y, Zheng W, Dai Y, He G (2020) Highly efficient polysulfide trapping and ion transferring within a hierarchical porous membrane interlayer for high-energy lithium-sulfur batteries. ACS Appl Energy Mater 3:5050–5057

    Article  CAS  Google Scholar 

  30. Huang W, Ruan D, Chen H, Hu K, Wen J, Yan W, Zhu Y, Zhang Y, Yu N, Wu Y (2020) A three-dimensional interconnected nitrogen-doped graphene-like porous carbon-modified separator for high-performance Li-S batteries. Sustain Energ Fuels 4:4264–4272

    Article  CAS  Google Scholar 

  31. Li Q, Liu Y, Yang L, Wang Y, Liu Y, Chen Y, Guo X, Wu Z, Zhong B (2021) N, O co-doped chlorella-based biomass carbon modified separator for lithium-sulfur battery with high capacity and long cycle performance. J Colloid Interf Sci 585:43–50

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Primary Research & Development Plan of Hunan Province (2016WK2028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Zhu or Xiangqian Shen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 55 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Li, J., Xie, H. et al. Biomass-derived high value-added porous carbon as the interlayer material for advanced lithium–sulfur batteries. Ionics 28, 3207–3215 (2022). https://doi.org/10.1007/s11581-022-04565-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04565-9

Keywords

Navigation