Skip to main content

Advertisement

Log in

Peltophorum pterocarpum-derived microporous activated carbon conjugated with polycarbazole for synergistic performance in supercapacitor application

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The novel camphor-10-sulfonic acid (CSA)-doped polycarbazole (PCz)/activated carbon (AC) nanocomposite was prepared via in situ chemical oxidative polymerisation of carbazole by using ammonium per-sulphate (APS) as an oxidising agent. The prepared nanocomposite electrode materials were characterised with an emphasis on parameters important for electrochemical storage systems including large specific surface area, pore volume and thermal stability by using Brunauer–Emmett–Teller (BET) and thermogravimetric analysis (TGA), respectively. The electrochemical behaviour of the prepared sample was analysed by cyclic voltammetry (CV). The formation of prepared sample was confirmed by XRD and Raman analysis. The HR-TEM and XPS characterisation techniques were also studied for surface morphology and chemical composition of the surface. The utility of prominent polycarbazole/activated carbon nanocomposite as an electrode for supercapacitor application is established. The PCz/AC nanocomposite electrode material exhibits specific capacitance 52 F g−1 at current density of 5 mA g−1 in aqueous electrolyte 3 M KOH. This work provides insight on the promising novel PCz/AC composite electrode material for energy storage application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhu J, Yang J, Miao R, Yao Z, Zhuang X, Feng X (2016) Nitrogen-enriched, ordered mesoporous carbons for potential electrochemical energy storage. J Mater Chem A 4(6):2286–2292. https://doi.org/10.1039/C5TA09073C

    Article  CAS  Google Scholar 

  2. Bokhari SW, Siddique AH, Pan H, Li Y, Imtiaz M, Chen Z, Zhu SM, Zhang D (2017) Nitrogen doping in the carbon matrix for Li-ion hybrid supercapacitors: state of the art, challenges and future prospective. RSC Adv 7(31):18926–18936. https://doi.org/10.1039/C7RA02296D

    Article  CAS  Google Scholar 

  3. Deng D, Kim B-S, Gopiraman M, Kim IS (2015) Needle-like MnO2/activated carbon nanocomposites derived from human hair as versatile electrode materials for supercapacitors. RSC Adv 5(99):81492–81498. https://doi.org/10.1039/C5RA16624A

    Article  CAS  Google Scholar 

  4. Sangeetha DN, Selvakumar M (2018) Active-defective activated carbon/MoS2 composites for supercapacitor and hydrogen evolution reactions. Appl Surf Sci 453:132–140. https://doi.org/10.1016/j.apsusc.2018.05.033

    Article  CAS  Google Scholar 

  5. Purty B, Choudhary R, Biswas A, Udayabhanu G (2018) Chemically grown mesoporous f-CNT/α-MnO2/PIn nanocomposites as electrode materials for supercapacitor application. Polym Bull 76:1619–1640. https://doi.org/10.1007/s00289-018-2458-z

    Article  CAS  Google Scholar 

  6. Yang C, Shen J, Wang C, Fei H, Bao H, Wang G (2014) All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes. J Mater Chem A 2(5):1458–1464. https://doi.org/10.1039/C3TA13953K

    Article  CAS  Google Scholar 

  7. Wang C, Yang Y, Li R, Wu D, Qin Y, Kong Y (2020) Polyaniline functionalized reduced graphene oxide/carbon nanotube ternary nanocomposite as a supercapacitor electrode. Chem comm 56(28):4003. https://doi.org/10.1039/D0CC01028F

    Article  CAS  PubMed  Google Scholar 

  8. Ates M, Özten E (2018) Supercapacitor device performances of polycarbazole/graphene and polycarbazole/nanoclay/graphene nanocomposites. Plast Rubber Compos 47(5):192–201. https://doi.org/10.1080/14658011.2018.1463687

    Article  CAS  Google Scholar 

  9. Yesappa L, Hebri V, Ashokkumar SP, Niranjana M, Molahalli V, Hundekal D (2018) Flexible and high energy density solid-state asymmetric supercapacitor based on polythiophene nanocomposites and charcoal. RSC Adv 8:31414–31426. https://doi.org/10.1039/C8RA06102E

    Article  Google Scholar 

  10. Feng S, Xu H, Zhang C, Chen Y, Zeng J, Jiang D, Jiang J-X (2017) Bicarbazole-based redox-active covalent organic frameworks for ultrahigh-performance energy storage. Chem comm 53(82):11334–11337. https://doi.org/10.1039/C7CC07024A

    Article  CAS  PubMed  Google Scholar 

  11. Huitrón-Gamboa J, Encinas C, Castillo-Ortega M, del Castillo-Castro T, Santacruz H, Rodríguez-Félix F, Manero O (2018) Supercapacitor based on in situ chemical synthesis of polypyrrole on rubber substrate: preparation and characterization. Polym Bull 76(4):1949–1965. https://doi.org/10.1007/s00289-018-2460-5

    Article  CAS  Google Scholar 

  12. Cherusseri J, Kar KK (2016) Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes. J Mater Chem A 4(25):9910–9922. https://doi.org/10.1039/C6TA02690G

    Article  CAS  Google Scholar 

  13. Mohamed MM, Khairy M, Ibrahem A (2018) Dispersed Ag(2)O/Ag on CNT-graphene composite: an implication for magnificent photoreduction and energy storage applications. Front Chem 6:250. https://doi.org/10.3389/fchem.2018.00250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Q, Ma Y, Liang X, Zhang D, Miao M (2019) Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chem Eng J 371:145–153. https://doi.org/10.1016/j.cej.2019.04.021

    Article  CAS  Google Scholar 

  15. Almeida DAL, Couto AB, Ferreira NG (2019) Flexible polyaniline/reduced graphene oxide/carbon fiber composites applied as electrodes for supercapacitors. J Alloys Compd 788:453–460. https://doi.org/10.1016/j.jallcom.2019.02.194

    Article  CAS  Google Scholar 

  16. Cong H-P, Ren X-C, Wang P, Yu S-H (2013) Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy Environ Sci 6(4):1185–1191. https://doi.org/10.1039/C2EE24203F

    Article  CAS  Google Scholar 

  17. Xu L, Jia M, Li Y, Zhang S, Jin X (2017) Design and synthesis of graphene/activated carbon/polypyrrole flexible supercapacitor electrodes. RSC Adv 7(50):31342–31351. https://doi.org/10.1039/C7RA04566B

    Article  CAS  Google Scholar 

  18. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7(4):1250–1280. https://doi.org/10.1039/C3EE43525C

    Article  CAS  Google Scholar 

  19. Rahman OSA, Chellasamy V, Ponpandian N, Amirthapandian S, Panigrahi BK, Thangadurai P (2014) A facile green synthesis of reduced graphene oxide by using pollen grains of Peltophorum pterocarpum and study of its electrochemical behavior. RSC Adv 4(100):56910–56917. https://doi.org/10.1039/C4RA06203E

    Article  CAS  Google Scholar 

  20. Madheswaran B, Kaushik S, Shanmugam S (2016) Green synthesis of gold nanoparticles by using Peltophorum pterocarpum flower extracts. Nano Biomed Eng 8(4):213–218. https://doi.org/10.5101/nbe.v8i4.p213-218

    Article  CAS  Google Scholar 

  21. Guo S, Guo B, Ma R, Zhu Y, Wang J (2020) KOH activation of coal-derived microporous carbons for oxygen reduction and supercapacitors. RSC Adv 10(27):15707–15714. https://doi.org/10.1039/D0RA01705A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cao W, Yang F (2018) Supercapacitors from high fructose corn syrup-derived activated carbons. Mater Today Energy 9:406–415. https://doi.org/10.1016/j.mtener.2018.07.002

    Article  Google Scholar 

  23. Li L-x, Li F (2011) The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes. New Carbon Mater 26(3):224–228. https://doi.org/10.1016/j.carbon.2011.06.026

    Article  CAS  Google Scholar 

  24. Peng H, Yu Q, Wang S, Kim J, Rowan AE, Nanjundan AK, Yamauchi Y, Yu J (2019) Molecular design strategies for electrochemical behavior of aromatic carbonyl compounds in organic and aqueous electrolytes. Adv Sci Lett 6(17):1900431–1900468. https://doi.org/10.1002/advs.201900431

    Article  CAS  Google Scholar 

  25. Liu S, Chen X, Li X, Huo P, Wang Y, Bai L, Zhang W, Niu M, Li Z (2016) Nitrogen- and oxygen-containing micro–mesoporous carbon microspheres derived from m-aminophenol formaldehyde resin for supercapacitors with high rate performance. RSC Adv 6(92):89744–89756. https://doi.org/10.1039/C6RA16608C

    Article  CAS  Google Scholar 

  26. Li X, Li M, Gao N, Li F, Zhang M, Baumgarten M (2013) A new blue-emitting conjugated polycarbazoles: low threshold of amplified spontaneous emission and charge-transporting properties. Synth Met 176:51–54. https://doi.org/10.1016/j.synthmet.2013.05.024

    Article  CAS  Google Scholar 

  27. Shakir M, Noor e I, Khan MS, Al-Resayes SI, Khan AA, Baig U (2014) Electrical conductivity, isothermal stability, and ammonia-sensing performance of newly synthesized and characterized organic–inorganic polycarbazole–titanium dioxide nanocomposite. Ind Eng Chem Res 53(19):8035–8044. https://doi.org/10.1021/ie404314q

    Article  CAS  Google Scholar 

  28. Zhao L, Xiao P-W, Chen Q, Fu C, Han B-H (2020) Polycarbazole and biomass-derived flexible nitrogen-doped porous carbon materials for gas adsorption and sensing. J Mater Chem A 8(14):6804–6811. https://doi.org/10.1039/C9TA13910A

    Article  CAS  Google Scholar 

  29. Zhao Y, Xie F, Zhang C, Kong R, Feng S, Jiang J-x (2017) Porous carbons derived from pyrene-based conjugated microporous polymer for supercapacitors. Microporous Mesoporous Mater 240:73–79. https://doi.org/10.1016/j.micromeso.2016.10.048

    Article  CAS  Google Scholar 

  30. Khatoon H, Iqbal S, Ahmad S (2019) Influence of carbon nanodots encapsulated polycarbazole hybrid on the corrosion inhibition performance of polyurethane nanocomposite coatings. New J Chem 43(26):10278–10290. https://doi.org/10.1039/C9NJ01671F

    Article  CAS  Google Scholar 

  31. Khalili S, Khoshandam B, Jahanshahi M (2016) Synthesis of activated carbon/polyaniline nanocomposites for enhanced CO2 adsorption. RSC Adv 6(42):35692–35704. https://doi.org/10.1039/C6RA00884D

    Article  CAS  Google Scholar 

  32. Praveena P, Ann M, Saminathan D, Dharmalingam K, Maiyalagan T, Narayanan V, Arumainathan S (2019) Camphor sulphonic acid doped novel polycarbazole-g-C3N4 as an efficient electrode material for supercapacitor. J Mater Sci Mater 30:8736–8750. https://doi.org/10.1007/s10854-019-01198-z

    Article  CAS  Google Scholar 

  33. Jadoun S, Verma A, Riaz U (2018) Luminol modified polycarbazole and poly(o-anisidine): Theoretical insights compared with experimental data. Spectrochim Acta A Mol Biomol 204:64–72. https://doi.org/10.1016/j.saa.2018.06.025

    Article  CAS  Google Scholar 

  34. Raj V, Madheswari D, Ali M (2010) Chemical formation, characterization and properties of polycarbazole. J Appl Polym Sci 116:147–154. https://doi.org/10.1002/app.31511

    Article  CAS  Google Scholar 

  35. Bello A, Barzegar F, Madito MJ, Momodu DY, Khaleed AA, Masikhwa TM, Dangbegnon JK, Manyala N (2016) Electrochemical performance of polypyrrole derived porous activated carbon-based symmetric supercapacitors in various electrolytes. RSC Adv 6(72):68141–68149. https://doi.org/10.1039/C6RA12690A

    Article  CAS  Google Scholar 

  36. Li Y, Liu Q, Kang D, Gu J, Zhang W, Zhang D (2015) Freeze-drying assisted synthesis of hierarchical porous carbons for high-performance supercapacitors. J Mater Chem A 3(42):21016–21022. https://doi.org/10.1039/C5TA04233J

    Article  CAS  Google Scholar 

  37. Chen Y-C, Lin L-Y (2019) Investigating the redox behavior of activated carbon supercapacitors with hydroquinone and p-phenylenediamine dual redox additives in the electrolyte. J Colloid Interface Sci 537:295–305. https://doi.org/10.1016/j.jcis.2018.11.026

    Article  CAS  PubMed  Google Scholar 

  38. Qing Y, Jiang Y, Lin H, Wang L, Liu A, Cao Y, Sheng R, Guo Y, Fan C, Zhang S, Jia D, Fan Z (2019) Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots. J Mater Chem A 7(11):6021–6027. https://doi.org/10.1039/C8TA11620B

    Article  CAS  Google Scholar 

  39. Zheng S, Cui Y, Zhang J, Gu Y, Shi X, Peng C, Wang D (2019) Nitrogen doped microporous carbon nanospheres derived from chitin nanogels as attractive materials for supercapacitors. RSC Adv 9(19):10976–10982. https://doi.org/10.1039/C9RA00683D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abouelamaiem DI, He G, Parkin I, Neville TP, Jorge AB, Ji S, Wang R, Titirici M-M, Shearing PR, Brett DJL (2018) Synergistic relationship between the three-dimensional nanostructure and electrochemical performance in biocarbon supercapacitor electrode materials. Sustain Energy Fuels 2(4):772–785. https://doi.org/10.1039/C7SE00519A

    Article  CAS  Google Scholar 

  41. Deng X, Shi W, Zhong Y, Zhou W, Liu M, Shao Z (2018) Facile strategy to low-cost synthesis of hierarchically porous, active carbon of high graphitization for energy storage. ACS Appl Mater Interfaces 10(25):21573–21581. https://doi.org/10.1021/acsami.8b04733

    Article  CAS  PubMed  Google Scholar 

  42. Liao Y, Cheng Z, Trunk M, Thomas A (2017) Targeted control over the porosities and functionalities of conjugated microporous polycarbazole networks for CO2-selective capture and H2 storage. Polym Chem 8(46):7240–7247. https://doi.org/10.1039/C7PY01439B

    Article  CAS  Google Scholar 

  43. Mat yashim M, Razali N, Saadon N, Abdul rahman N (2016) Effect of activation temperature on properties of activated carbon prepared from oil palm kernel shell (OPKS). ARPN J Eng Appl Sci 11(10):6389–6392 (ISSN 1819-6608)

    Google Scholar 

  44. Figueiredo J, Pereira M (2013) ChemInform abstract: porous texture versus surface chemistry in applications of adsorption by carbons. Chem Inform 44(39):471–498. https://doi.org/10.1002/chin.201339203

    Article  Google Scholar 

  45. Zhu K, Wang Y, Tang JA, Guo S, Gao Z, Wei Y, Chen G, Gao Y (2017) A high-performance supercapacitor based on activated carbon fibers with an optimized pore structure and oxygen-containing functional groups. Mater Chem Front 1(5):958–966. https://doi.org/10.1039/C6QM00196C

    Article  CAS  Google Scholar 

  46. Dhanavel S, Nivethaa EAK, Dhanapal K, Gupta VK, Narayanan V, Stephen A (2016) α-MoO3/polyaniline composite for effective scavenging of Rhodamine B, Congo red and textile dye effluent. RSC Adv 6(34):28871–28886. https://doi.org/10.1039/C6RA02576E

    Article  CAS  Google Scholar 

  47. Thiruppathi AR, Sidhureddy B, Salverda M, Wood PC, Chen A (2020) Novel three-dimensional N-doped interconnected reduced graphene oxide with superb capacitance for energy storage. J Electroanal Chem 113911:1572–6657. https://doi.org/10.1016/j.jelechem.2020.113911

    Article  CAS  Google Scholar 

  48. Das M, Ghosh S, Roy S (2018) Non-covalent functionalization of CNTs with polycarbazole: a chemiresistive humidity sensor with tunable chemo-electric attributes at room temperature. New J Chem 42(9):6918–6931. https://doi.org/10.1039/C8NJ00288F

    Article  CAS  Google Scholar 

  49. Srisawasdi T, Petcharoen K, Sirivat A, Jamieson AM (2015) Electromechanical response of silk fibroin hydrogel and conductive polycarbazole/silk fibroin hydrogel composites as actuator material. Mater Sci Eng C 56(1):1–8. https://doi.org/10.1016/j.msec.2015.06.005

    Article  CAS  Google Scholar 

  50. Gupta B, Prakash R, Melvin A (2012) Chemical synthesis of polycarbazole (PCz), modification and pH sensor application. Sixth International Conference on Sensing Technology (ICST), Kolkata, India. IEEE, p 365–369. https://doi.org/10.1109/ICSensT.2012.6461702

  51. Gupta B, Joshi L, Prakash R (2011) Novel synthesis of polycarbazole–gold nanocomposite. Macromol Chem Phys 212(15):1692–1699. https://doi.org/10.1002/macp.201100262

    Article  CAS  Google Scholar 

  52. Ma G, Wang H, Sun K, Peng H, Wu Y, Lei Z (2015) A multi-level structure bio-carbon composite with polyaniline for high performance supercapacitors. RSC Adv 5(16):12230–12236. https://doi.org/10.1039/C4RA09964H

    Article  CAS  Google Scholar 

  53. Hu S, Hsieh Y-L (2017) Lignin derived activated carbon particulates as an electric supercapacitor: carbonization and activation on porous structures and microstructures. RSC Adv 7(48):30459–30468. https://doi.org/10.1039/C7RA00103G

    Article  CAS  Google Scholar 

  54. Canal-Rodríguez M, Menéndez JA, Montes-Morán MA, Martín-Gullón I, Parra JB, Arenillas A (2019) The role of conductive additives on the performance of hybrid carbon xerogels as electrodes in aqueous supercapacitors. Electrochim Acta 295:693. https://doi.org/10.1016/j.electacta.2018.10.189

    Article  CAS  Google Scholar 

  55. Wang F, Ma J, Zhou K, Li X (2020) MoS2/corncob-derived activated carbon for supercapacitor application. Mater Chem Phys 244(2):122215. https://doi.org/10.1016/j.matchemphys.2019.122215

    Article  CAS  Google Scholar 

  56. Selvakumar M, Bhat DK (2012) Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor. Appl Surf Sci 263:236–241. https://doi.org/10.1016/j.apsusc.2012.09.036

    Article  CAS  Google Scholar 

  57. Rodrigues AC, Silva ELd, Quirino SF, Cuña A, Marcuzzo JS, Matsushima JT, Gonçalves ES, Baldan MR (2018) Ag@ Activated carbon felt composite as electrode for supercapacitors and a study of three different aqueous electrolytes. Mater Res 22(1):1–9. https://doi.org/10.1590/1980-5373-mr-2018-0530

    Article  CAS  Google Scholar 

  58. Sudhakar Y, Cortiñas SM, Selvakumar M (2019) Sequential layer-by-layer engineered polypyrrole-activated carbon multilayer films: high-energy composite electrode materials for symmetrical supercapacitors. Mater Technol 34(3):126–134. https://doi.org/10.1080/10667857.2018.1540330

    Article  CAS  Google Scholar 

  59. Qin W, Li J-L, Fei G, Li W-S, Wu K-Z, Wang X-D (2008) Activated carbon coated with polyaniline as an electrode material in supercapacitors. New Carbon Mater 23(3):275–280. https://doi.org/10.1016/S1872-5805(08)60030-X

    Article  Google Scholar 

Download references

Acknowledgements

One of the author P. P sincerely thanks Ms. Saranya Devi, SRM Institute of Science Technology and Material Analysis & Research Centre, Bengaluru, for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Arumainathan.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchatcharam, P., Mathew, S.A., Saminathan, D. et al. Peltophorum pterocarpum-derived microporous activated carbon conjugated with polycarbazole for synergistic performance in supercapacitor application. Ionics 28, 3511–3524 (2022). https://doi.org/10.1007/s11581-022-04544-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04544-0

Keywords

Navigation