Skip to main content
Log in

Synthesis and electrochemical performances of BiVO4/CNTs composite as anode material for lithium-ion battery

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Bismuth vanadate is considered to be a potential lithium-ion storage electrode material due to its high theoretical capacity and low theoretical platform. In this paper, BiVO4/carbon nanotubes (BiVO4/CNTs) composites were synthesized by a simple mixed solvothermal method. The performances of BiVO4/CNTs composites with different contents of CNTs were tested by battery test system. The BiVO4 composited with carbon nanotubes had high electrical conductivity and large Li+ diffusion coefficient, which lead BiVO4/CNTs (BVO/C) to behave better electrochemical properties than those of pure BiVO4. Particularly, the composite (BVO/C-2) owned the best performance among all samples of BVO/C. When the current density was 100 mA/g, its initial specific capacity was 956 mA h/g and kept at 984.3 mA h/g after 200 cycles. When the current density is 1 A/g, its specific capacity could keep at about 340 mA h/g after 700 cycles. Besides, the BVO/C-2 composite behaved good rate performances. The reasons for that the BVO/C-2 owned outstanding electrochemical properties were presented else.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Couto A, Estanqueiro A (2021) Assessment of wind and solar PV local complementarity for the hybridization of the wind power plants installed in Portugal. Journal of Cleaner Production 319:128728

    Article  Google Scholar 

  2. Do TN, Burke PJ, Nguyen HN, Overland I, Suryadi B, Swandaru A, Yurnaidi Z (2021) Vietnam’s solar and wind power success: policy implications for the other ASEAN countries. Energy Sustain Dev 65:1–11

    Article  Google Scholar 

  3. Hassan MK, Chowdhury R, Ghosh S, Manna D, Pappinen A, Kuittinen S (2021) Energy and environmental impact assessment of Indian rice straw for the production of second-generation bioethanol. Sustainable Energy Technologies and Assessments 47:101546

    Article  Google Scholar 

  4. Gong F, Li H, Zhou Q, Wang M, Wang W, Lv Y, Xiao R, Papavassiliou DV (2020) Agricultural waste-derived moisture-absorber for all-weather atmospheric water collection and electricity generation. Nano Energy 74:104922

    Article  CAS  Google Scholar 

  5. Kim T, Song W, Son D-Y, Ono LK, Qi Y (2019) Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of materials chemistry A 7(7):2942–2964

    Article  CAS  Google Scholar 

  6. Zhang C, Zhang Y, Wang J, Wang D, He D, Xia Y (2013) Li4Ti5O12 prepared by a modified citric acid sol–gel method for lithium-ion battery. J Power Sources 236:118–125

    Article  CAS  Google Scholar 

  7. Yi T-F, Mei J, Peng P-P, Luo S (2019) Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Compos B Eng 167:566–572

    Article  CAS  Google Scholar 

  8. Yi T-F, Sari HMK, Li X, Wang F, Zhu Y-R, Hu J, Zhang J, Li X (2021) A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors. Nano Energy 85:105955

    Article  CAS  Google Scholar 

  9. Lu Y, Yu L, Lou XWD (2018) Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4(5):972–996

    Article  CAS  Google Scholar 

  10. Wu L, Lu H, Xiao L, Qian J, Ai X, Yang H, Cao Y (2014) A tin (II) sulfide–carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. Journal of Materials Chemistry A 2(39):16424–16428

    Article  CAS  Google Scholar 

  11. Kim H, Son Y, Park C, Lee M-J, Hong M, Kim J, Lee M, Cho J, Choi HC (2015) Germanium silicon alloy anode material capable of tunable overpotential by nanoscale Si segregation. Nano Lett 15(6):4135–4142

    Article  CAS  PubMed  Google Scholar 

  12. Verma R, Didwal PN, Nguyen A-G, Park C-J (2021) SnSe nanocomposite chemically-bonded with carbon-coating as an anode material for K-ion batteries with outstanding capacity and cyclability. Chem Eng J 421:129988

    Article  CAS  Google Scholar 

  13. Liu L, Hu T, Dai K, Zhang J, Liang C (2021) A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation. Chin J Catal 42(1):46–55

    Article  CAS  Google Scholar 

  14. Xu X, Niu F, Zhang D, Chu C, Wang C, Yang J, Qian Y (2018) Hierarchically porous Li3VO4/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors. J Power Sources 384:240–248

    Article  CAS  Google Scholar 

  15. Ying M, Hou J, Xie W, Xu Y, Shen S, Pan H, Du M (2018) Synthesis, semiconductor characteristics and gas-sensing selectivity for cerium-doped neodymium vanadate nanorods. Sens Actuators, B Chem 260:125–133

    Article  CAS  Google Scholar 

  16. Zhao L, Duan H, Zhao Y, Kuang Q, Fan Q, Chen L, Dong Y (2018) High capacity and stability of Nb-doped Li3VO4 as an anode material for lithium ion batteries. J Power Sources 378:618–627

    Article  CAS  Google Scholar 

  17. Dubal DP, Patil DR, Patil SS, Munirathnam N, Gomez-Romero P (2017) BiVO4 fern architectures: a competitive anode for lithium-ion batteries. Chemsuschem 10(21):4163–4169

    Article  CAS  PubMed  Google Scholar 

  18. Li WJ, Han C, Chou SL, Wang JZ, Li Z, Kang YM, Liu HK, Dou SX (2016) Graphite‐nanoplate-coated Bi2S3 composite with high-volume energy density and excellent cycle life for room-temperature sodium–sulfide batteries. Chem A Eur J 22(2):590–597

    Article  CAS  Google Scholar 

  19. Sottmann J, Herrmann M, Vajeeston P, Hu Y, Ruud A, Drathen C, Emerich H, Fjellvag H, Wragg DS (2016) How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chem Mater 28(8):2750–2756

    Article  CAS  Google Scholar 

  20. Lan JL, Jin Y, Qin C, Yu Y, Yang X (2017) Bio-inspired rose-like Bi@ nitrogen-enriched carbon towards high-performance lithium-ion batteries. ChemistrySelect 2(24):7178–7184

    Article  CAS  Google Scholar 

  21. Li X, Ni J, Savilov S, Li L (2018) Materials based on antimony and bismuth for sodium storage. Chemistry–A European Journal 24(52):13719–13727

    Article  CAS  Google Scholar 

  22. Nikam S, Joshi S (2016) Irreversible phase transition in BiVO4 nanostructures synthesized by a polyol method and enhancement in photo degradation of methylene blue. RSC Adv 6(109):107463–107474

    Article  CAS  Google Scholar 

  23. Yang X, Fernández-Carrión AJ, Wang J, Porcher F, Fayon F, Allix M, Kuang X (2018) Cooperative mechanisms of oxygen vacancy stabilization and migration in the isolated tetrahedral anion Scheelite structure. Nat Commun 9(1):4484

    Article  PubMed  PubMed Central  Google Scholar 

  24. Patil DR, Jadhav SD, Mungale A, Kalekar AS, Dubal DP (2019) Fractal granular BiVO4 microspheres as high performance anode material for Li-ion battery. Mater Lett 252:235–238

    Article  CAS  Google Scholar 

  25. Xie R, Li Y, Huang H, Su L, Li L, Pan X, Guo Z, Luo F, Guo Z, Guo B (2020) Fabrication, structure, electrochemical properties and lithium-ion storage performance of Nd: BiVO4 nanocrystals. Ceram Int 46(3):3119–3123

    Article  CAS  Google Scholar 

  26. Fan X, Li S, Zhou H, Lu L (2015) One-pot high temperature hydrothermal synthesis of Fe3O4@ C/graphene nanocomposite as anode for high rate lithium ion battery. Electrochim Acta 180:1041–1049

    Article  CAS  Google Scholar 

  27. He Y, Huang L, Cai J-S, Zheng X-M, Sun S-G (2010) Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries. Electrochim Acta 55(3):1140–1144

    Article  CAS  Google Scholar 

  28. Yang Y, Li J, Chen D, Zhao J (2016) A facile electrophoretic deposition route to the Fe3O4/CNTs/rGO composite electrode as a binder-free anode for lithium ion battery. ACS Appl Mater Interfaces 8(40):26730–26739

    Article  CAS  PubMed  Google Scholar 

  29. Yi T-F, Chang H, Wei T-T, Qi S-Y, Li Y, Zhu Y-R (2021) Approaching high-performance electrode materials of ZnCo2S4 nanoparticle wrapped carbon nanotubes for supercapacitors. J Materiomics 7(3):563–576

    Article  Google Scholar 

  30. Wang K, Li M, Liu Y-N, Gu Y, Li Q, Zhang Z (2014) Effect of acidification conditions on the properties of carbon nanotube fibers. Appl Surf Sci 292:469–474

    Article  CAS  Google Scholar 

  31. Xie S, Deng Y, Mei J, Yang Z, Lau W-M, Liu H (2016) Facile synthesis of CoS2/CNTs composite and its exploitation in thermal battery fabrication. Compos B Eng 93:203–209

    Article  CAS  Google Scholar 

  32. Xie S, Tong X-L, Jin G-Q, Qin Y, Guo X-Y (2013) CNT–Ni/SiC hierarchical nanostructures: preparation and their application in electrocatalytic oxidation of methanol. J Mater Chem A 1(6):2104–2109

    Article  CAS  Google Scholar 

  33. Zhou G, Li L, Zhang Q, Li N, Li F (2013) Octahedral Co3O4 particles threaded by carbon nanotube arrays as integrated structure anodes for lithium ion batteries. Phys Chem Chem Phys 15(15):5582–5587

    Article  CAS  PubMed  Google Scholar 

  34. Ren Y, Wang J, Huang X, Ding J (2017) Three-dimensional SnS2 flowers/carbon nanotubes network: extraordinary rate capacity for sodium-ion battery. Mater Lett 186:57–61

    Article  CAS  Google Scholar 

  35. Jiang Y, Chen S, Mu D, Zhao Z, Li C, Ding Z, Xie C, Wu F (2018) Flexible TiO2/SiO2/C film anodes for lithium-ion batteries. Chemsuschem 11(13):2040–2044

    Article  CAS  PubMed  Google Scholar 

  36. Tamboli MS, Dubal DP, Patil SS, Shaikh AF, Deonikar VG, Kulkarni MV, Maldar NN, Asiri AM, Gomez-Romero P, Kale BB (2017) Mimics of microstructures of Ni substituted Mn1−xNixCo2O4 for high energy density asymmetric capacitors. Chem Eng J 307:300–310

    Article  CAS  Google Scholar 

  37. Yi T-F, Qiu L-Y, Mei J, Qi S-Y, Cui P, Luo S, Zhu Y-R, Xie Y, He Y-B (2020) Porous spherical NiO@ NiMoO4@ PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci Bullet 65(7):546–556

    Article  CAS  Google Scholar 

  38. Tamboli MS, Jadhav HS, Patil DR, Shaikh AF, Patil SS, Seo JG, Choi H, Gosavi SW, Kale BB (2020) Hierarchical novel NiCo2O4/BiVO4 hybrid heterostructure as an advanced anode material for rechargeable lithium ion battery. Int J Energy Res 44(14):12126–12135

    Article  CAS  Google Scholar 

  39. Chen Y, Wang B, Hou T, Hu X, Li X, Sun X, Cai S, Ji H, Zheng C (2018) Enhanced electrochemical performance of SnS nanoparticles/CNTs composite as anode material for sodium-ion battery. Chin Chem Lett 29(1):187–190

    Article  CAS  Google Scholar 

  40. Zhang Q, Pei J, Chen G, Bie C, Sun J, Liu J (2017) Porous Co3V2O8 nanosheets with ultrahigh performance as anode materials for lithium ion batteries. Adv Mater Interfaces 4(13):1700054

    Article  Google Scholar 

  41. Anh LT, Rai AK, Thi TV, Gim J, Kim S, Mathew V, Kim J (2014) Enhanced electrochemical performance of novel K-doped Co3O4 as the anode material for secondary lithium-ion batteries. J Mater Chem A 2(19):6966–6975

    Article  CAS  Google Scholar 

  42. Bai Y, Tang Y, Gao Y, Li X, Liu L, Zhang Y, Gao S (2019) Bamboo-like porous CNTs encapsulated Zn3V3O8 nanoparticles as high-performance anodes for lithium ion batteries. J Alloy Compd 798:678–684

    Article  CAS  Google Scholar 

  43. Yang W, Wang H, Liu T, Gao L (2016) A Bi2S3@ CNT nanocomposite as anode material for sodium ion batteries. Mater Lett 167:102–105

    Article  CAS  Google Scholar 

  44. Bai J, Chen X, Olsson E, Wu H, Wang S, Cai Q, Feng C (2020) Synthesis of Bi2S3/carbon nanocomposites as anode materials for lithium-ion batteries. J Mater Sci Technol 50:92–102

    Article  Google Scholar 

  45. Zhang L, Bai Q, Jin K, Wang L, Zhang Y, Yanhua S (2015) Synthesis and electrochemical performance of Bi2WO6/graphene composite as anode material for lithium-ion batteries. Mater Lett 141:88–91

    Article  CAS  Google Scholar 

  46. Zhang L, Zhao Z, Xia T, Zhang S, Li X, Zhang A (2018) Anchoring Bi2WO6 nanoparticles on 3D graphene frameworks for enhanced lithium storage. Mater Lett 210:345–349

    Article  CAS  Google Scholar 

  47. Chen S, Zhang H, Zhai J, Yan J, Wang G, Wang W, Zhao W, Zhang Z (2021) Bi8V2O17 hierarchical framework encapsulated in flexible carbon nanotube-interwoven graphene hybrid for advanced lithium/sodium storage: experimental and theoretical study. Chemical Engineering Journal 405:127032

    Article  CAS  Google Scholar 

  48. Fang D, Cui M, Bao R, Yi J, Luo Z (2020) In-situ coating polypyrrole on charged BiVO4 nanowire arrays to improve lithium-ion storage properties. Solid State Ionics 346:115222

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (2198073 and NSFC−U1903217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanqi Feng.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Chen, X. & Feng, C. Synthesis and electrochemical performances of BiVO4/CNTs composite as anode material for lithium-ion battery. Ionics 28, 1483–1493 (2022). https://doi.org/10.1007/s11581-022-04456-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04456-z

Keywords

Navigation