Skip to main content

Advertisement

Log in

Combination of redox-active natural indigo dye and bio-derived carbon from ridge gourd fruit for high-performance asymmetric supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A low-cost, high surface area, and hierarchically porous activated carbon (ACRG-800) was derived via KOH activation and a one-step carbonization process of dried ridge gourd (RG) fruits. ACRG-800 was microporous in nature with a specific surface area of ∼1370 m2 g−1. When supercapacitor (SC) electrodes were fabricated using ACRG-800, high charge storage capacity with a specific capacitance of 352 F g−1 (at a current density of 2 A g−1) and 280 F g−1 (at a current density of 2 A g−1) was attained in three-electrode and symmetric two-electrode system in aqueous 1 M H2SO4 electrolyte, respectively. Further, the redox-active indigo (IND) dye was mixed with ACRG-800 to obtain ACRG-800-IND. Asymmetric SC device, fabricated using ACRG-800 positive electrode and ACRG-800-IND negative electrode in 1 M H2SO4 electrolyte, exhibited high specific energy of 13.2 Wh kg−1 at specific power of 1 kW kg−1 when operated at 2 A g−1 in the voltage range of 0 to 1 V. Briefly, the high surface area framework of ACRG-800 provides an outstanding electrical double-layer capacitance, while IND adds faradaic pseudocapacitance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  PubMed  Google Scholar 

  2. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539

    Article  CAS  PubMed  Google Scholar 

  3. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sustain Energy Rev 58:1189–1206

    Article  Google Scholar 

  4. Muthu Balasubramanian M, Subramani M, Murugan D, Ponnusamy S (2020) Groundnut shell–derived porous carbon-based supercapacitor with high areal mass loading using carbon cloth as current collector. Ionics (Kiel) 26:6297–6308

    Article  CAS  Google Scholar 

  5. Macías-García A, Torrejón-Martín D, Díaz-Díez MÁ, Carrasco-Amador JP (2019) Study of the influence of particle size of activate carbon for the manufacture of electrodes for supercapacitors. J Energy Storage 25:100829

    Article  Google Scholar 

  6. Vinayagam M, Suresh R, Sivasamy A, Lucia A, Barros, FDe, (2020) Biomass and bioenergy biomass-derived porous activated carbon from Syzygium cumini fruit shells and Chrysopogon zizanioides roots for high-energy density symmetric supercapacitors. Biomass Bioenerg 143:105838

    Article  CAS  Google Scholar 

  7. Dehkhoda AM, Gyenge E, Ellis N (2016) A novel method to tailor the porous structure of KOH-activated biochar and its application in capacitive deionization and energy storage. Biomass Bioenerg 87:107–121

    Article  CAS  Google Scholar 

  8. Tao Y, Wu Y, Chen H, Chen W, Wang J, Tong Y, Pei G, Shen Z, Guan C (2020) Synthesis of amorphous hydroxyl-rich Co3O4 for flexible high-rate supercapacitor. Chem Eng J 396:125364

    Article  CAS  Google Scholar 

  9. Ma Y, Zhu X, Wang B, Liu S, Meng T, Chen H, Peng B, Deng Z (2020) Sacrificial template synthesis of hierarchical nickel hydroxidenitrate hollow colloidal particles for electrochemical energy storage. Chem Eng Sci 217:115548

    Article  CAS  Google Scholar 

  10. Bi R-R, Wu X-L, Cao F-F, Jiang L-Y, Guo Y-G, Wan L-J (2010) Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance. J Phys Chem C 114:2448–2451

    Article  CAS  Google Scholar 

  11. Wu Y, Chen H, Lu Y, Yang J, Zhu X, Zheng Y, Lou G, Wu Y, Wu Q, Shen Z, Pan Z (2021) Rational design of cobalt–nickel double hydroxides for flexible asymmetric supercapacitor with improved electrochemical performance. J Colloid Interface Sci 581:455–464

    Article  CAS  PubMed  Google Scholar 

  12. Izwan Misnon I, Krishnan SG, Jose R (2020) Thin chemisorbed polyaniline film on cobalt oxide as an electrode for hybrid energy storage devices. ChemistrySelect 5:7973–7983

    Article  CAS  Google Scholar 

  13. Chaudhary M, Nayak AK, Muhammad R, Pradhan D, Mohanty P (2018) Nitrogen-enriched nanoporous polytriazine for high-performance supercapacitor application. ACS Sustain Chem Eng 6:5895–5902

    Article  CAS  Google Scholar 

  14. Alabadi A, Razzaque S, Dong Z, Wang W, Tan B (2016) Graphene oxide-polythiophene derivative hybrid nanosheet for enhancing performance of supercapacitor. J Power Sources 306:241–247

    Article  CAS  Google Scholar 

  15. An N, Hu Z, Wu H, Yang Y, Lei Z, Dong W (2017) Organic multi-electron redox couple-induced functionalization for enabling ultrahigh rate and cycling performances of supercapacitors. J Mater Chem A 5:25420–25430

    Article  CAS  Google Scholar 

  16. Jangir H, Pandey M, Jha R, Dubey A, Verma S, Philip D, Sarkar S, Das M (2018) Sequential entrapping of Li and S in a conductivity cage of N-doped reduced graphene oxide supercapacitor derived from silk cocoon: a hybrid Li-S-silk supercapacitor. Appl Nanosci 8:379–393

    Article  CAS  Google Scholar 

  17. Ashraf CM, Anilkumar KM, Jinisha B, Manoj M, Pradeep VS, Jayalekshmi S (2018) Acid washed, steam activated, coconut shell derived carbon for high power supercapacitor applications. J Electrochem Soc 165:A900

    Article  CAS  Google Scholar 

  18. Zhao Y, Wang X, Wang N, Li M, Li Q, Liu J (2018) Unraveling factors leading to high pseudocapacitance of redox-active small aromatics on graphene. J Phys Chem C 123:994–1002

    Article  Google Scholar 

  19. Pognon G, Cougnon C, Mayilukila D, Bélanger D (2012) Catechol-modified activated carbon prepared by the diazonium chemistry for application as active electrode material in electrochemical capacitor. ACS Appl Mater Interfaces 4:3788–3796

    Article  CAS  PubMed  Google Scholar 

  20. Xu R, Guo F, Cui X, Zhang L, Wang K, Wei J (2015) High performance carbon nanotube based fiber-shaped supercapacitors using redox additives of polypyrrole and hydroquinone. J Mater Chem A 3:22353–22360

    Article  CAS  Google Scholar 

  21. Zhang L, Yang S, Chang J, Zhao D, Wang J, Yang C, Cao B (2020) A review of redox electrolytes for supercapacitors. Front Chem 8:1–7

    PubMed  PubMed Central  Google Scholar 

  22. Chen S, Zhitomirsky I (2014) Polypyrrole coated carbon nanotubes for supercapacitors, prepared using indigo carmine as a dispersant and dopant. Mater Lett 135:47–50

    Article  CAS  Google Scholar 

  23. Hou L, Kong C, Hu Z, Han Y, Wu B (2021) Redox active organic molecule-emodin modified graphene for high-performance supercapacitors. J Electroanal Chem 895:115402

    Article  CAS  Google Scholar 

  24. Guo B, Hu Z, An Y, An N, Jia P, Zhang Y, Yang Y, Li Z (2016) Nitrogen-doped heterostructure carbon functionalized by electroactive organic molecules for asymmetric supercapacitors with high energy density. RSC Adv 6:40602–40614

    Article  CAS  Google Scholar 

  25. Raman V, Mohan NV, Balakrishnan B, Rajmohan R, Rajangam V, Selvaraj A, Kim HJ (2020) Porous shiitake mushroom carbon composite with NiCo2O4 nanorod electrochemical characteristics for efficient supercapacitor applications. Ionics (Kiel) 26:345–354

    Article  CAS  Google Scholar 

  26. Chen X, Wang H, Yi H, Wang X, Yan X, Guo Z (2014) Anthraquinone on porous carbon nanotubes with improved supercapacitor performance. J Phys Chem C 118:8262–8270

    Article  CAS  Google Scholar 

  27. Ma X, Zhou W, Mo D, Wang Z, Xu J (2015) Capacitance comparison of poly(indole-5-carboxylic acid) in different electrolytes and its symmetrical supercapacitor in HClO4 aqueous electrolyte. Synth Met 203:98–106

    Article  CAS  Google Scholar 

  28. Roldán S, González Z, Blanco C, Granda M, Menéndez R, Santamaría R (2011) Redox-active electrolyte for carbon nanotube-based electric double layer capacitors. Electrochim Acta 56:3401–3405

    Article  Google Scholar 

  29. Komorsky-Lovrić Š (2000) Square-wave voltammetry of an aqueous solution of indigo. J Electroanal Chem 482:222–225

    Article  Google Scholar 

  30. Bechtold T, Burtscher E, Amann A, Bobleter O (1992) Reduction of dispersed indigo dye by indirect electrolysis. Angew Chem 31:1068–1069

    Article  Google Scholar 

  31. Xu L, Zhang Y, Zhou W, Jiang F, Zhang H, Jiang Q, Jia Y, Wang R, Liang A, Xu J, Duan X (2020) Fused heterocyclic molecule-functionalized N-doped reduced graphene oxide by non-covalent bonds for high-performance supercapacitors. ACS Appl Mater Interfaces 12:45202–45213

    Article  CAS  PubMed  Google Scholar 

  32. Fang J, Guo D, Kang C, Wan S, Fu L, Liu Q (2019) N, O-enriched hierarchical porous graphite carbon flake for high performance supercapacitors. J Electroanal Chem 851:113467

    Article  CAS  Google Scholar 

  33. Hao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118:9233–9280

    Article  Google Scholar 

  34. Zhong Y, Li Q, Liu R (2020) Blueberry-peel-derived porous carbon for high-performance supercapacitors: the effect of N-doping and activation. ChemistrySelect 5:1029–1036

    Article  CAS  Google Scholar 

  35. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. Acs Catal 2:781–794

    Article  CAS  Google Scholar 

  36. Liu Y, Cao L, Luo J, Peng Y, Ji Q, Dai J, Zhu J, Liu X (2018) Biobased nitrogen-and oxygen-codoped carbon materials for high-performance supercapacitor. ACS Sustain Chem Eng 7:2763–2773

    Article  Google Scholar 

  37. Chou T, Hong JL (2020) Areca nut–derived porous carbons for supercapacitor and CO2 capture applications. Ionics (Kiel) 26:1419–1429

    Article  CAS  Google Scholar 

  38. Zhan C, Yu X, Liang Q, Liu W, Wang Y, Lv R, Huang Z-H, Kang F (2016) Flour food waste derived activated carbon for high-performance supercapacitors. RSC Adv 6:89391–89396

    Article  CAS  Google Scholar 

  39. Kim CK, Choi IT, Kang SH, Kim HK (2017) Anchovy-derived nitrogen and sulfur co-doped porous carbon materials for high-performance supercapacitors and dye-sensitized solar cells. RSC Adv 7:35565–35574

    Article  CAS  Google Scholar 

  40. Subramani K, Sudhan N, Karnan M, Sathish M (2017) Orange peel derived activated carbon for fabrication of high-energy and high-rate supercapacitors. ChemistrySelect 2:11384–11392

    Article  CAS  Google Scholar 

  41. Libich J, Máca J, Vondrák J, Čech O, Sedlaříková M (2018) Supercapacitors: properties and applications. J Energy Storage 17:224–227

    Article  Google Scholar 

  42. Raja M, Sadhasivam B, Naik RJ, Dhamodharan R, Ramanujam K (2019) A chitosan/poly (ethylene glycol)-ran-poly (propylene glycol) blend as an eco-benign separator and binder for quasi-solid-state supercapacitor applications. Sustain Energy Fuels 3:760–773

    Article  CAS  Google Scholar 

  43. Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, Yan F (2014) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7:379–386

    Article  CAS  Google Scholar 

  44. Liu D, Zhang W, Lin H, Li Y, Lu H, Wang Y (2015) Hierarchical porous carbon based on the self-templating structure of rice husk for high-performance supercapacitors. RSC Adv 5:19294–19300

    Article  CAS  Google Scholar 

  45. Liu B, Zhang L, Qi P, Zhu M, Wang G, Ma Y, Guo X, Chen H, Zhang B, Zhao Z (2016) Nitrogen-doped banana peel–derived porous carbon foam as binder-free electrode for supercapacitors. Nanomaterials 6:18

    Article  PubMed Central  Google Scholar 

  46. Zhu X, Yu S, Xu K, Zhang Y, Zhang L, Lou G, Wu Y, Zhu E, Chen H, Shen Z, Bao B, Fu S (2018) Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem Eng Sci 181:36–45

    Article  CAS  Google Scholar 

  47. Qu WH, Xu YY, Lu AH, Zhang XQ, Li WC (2015) Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresour Technol 189:285–291

    Article  CAS  PubMed  Google Scholar 

  48. Zhang WL, Xu JH, Hou DX, Yin J, Liu DB, He YP, Lin HB (2018) Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. J Colloid Interface Sci 530:338–344

    Article  CAS  PubMed  Google Scholar 

  49. Yu S, Zhu X, Lou G, Wu Y, Xu K, Zhang Y, Zhang L, Zhu E, Chen H, Shen Z, Bao B, Fu S (2018) Sustainable hierarchical porous biomass carbons enriched with pyridinic and pyrrolic nitrogen for asymmetric supercapacitor. Mater Des 149:184–193

    Article  CAS  Google Scholar 

  50. Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu Z, Lu GQ (2010) Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources 195:912–918

    Article  CAS  Google Scholar 

  51. Shi W, Chang B, Yin H, Zhang S, Yang B, Dong X (2019) Crab shell-derived honeycomb-like graphitized hierarchically porous carbons for satisfactory rate performance of all-solid-state supercapacitors. Sustain Energy Fuels 3:1201–1214

    Article  CAS  Google Scholar 

  52. Huang Y, Peng L, Liu Y, Zhao G, Chen JY, Yu G (2016) Biobased nano porous active carbon fibers for high-performance supercapacitors. ACS Appl Mater Interfaces 8:15205–15215

    Article  CAS  PubMed  Google Scholar 

  53. Yun YS, Cho SY, Shim J, Kim BH, Chang S, Baek SJ, Huh YS, Tak Y, Park YW, Park S (2013) Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv Mater 25:1993–1998

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Liu X, Wang S, Dou S, Li L (2016) Interconnected honeycomb-like porous carbon derived from plane tree fluff for high performance supercapacitors. J Mater Chem A 4:10869–10877

    Article  CAS  Google Scholar 

  55. Xu L, Shi R, Li H, Han C, Wu M, Wong CP, Kang F, Li B (2018) Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors. Carbon N Y 127:459–468

    Article  CAS  Google Scholar 

  56. Wang Y, Yu L, Xia Y (2006) Electrochemical capacitance performance of hybrid supercapacitors based on Ni(OH)[sub 2]∕carbon nanotube composites and activated carbon. J Electrochem Soc 153:A743

    Article  CAS  Google Scholar 

  57. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon N Y 39:507–514

    Article  CAS  Google Scholar 

  58. Frackowiak E, Metenier K, Bertagna V, Beguin F (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 77:2421–2423

    Article  CAS  Google Scholar 

  59. Youssry M, Kamand FZ, Magzoub MI, Nasser MS (2018) Aqueous dispersions of carbon black and its hybrid with carbon nanofibers. RSC Adv 8:32119–32131

    Article  CAS  Google Scholar 

  60. Bond AM, Marken F, Hill E, Compton RG, Hügel H (1997) The electrochemical reduction of indigo dissolved in organic solvents and as a solid mechanically attached to a basal plane pyrolytic graphite electrode immersed in aqueous electrolyte solution. J Chem Soc Perkin Trans 2:1735–1742

    Article  Google Scholar 

  61. Sanati S, Abazari R, Morsali A, Kirillov AM, Junk PC, Wang J (2019) An asymmetric supercapacitor based on a non-calcined 3D pillared cobalt(II) metal-organic framework with long cyclic stability. Inorg Chem 58:16100–16111

    Article  CAS  PubMed  Google Scholar 

  62. Tao Y, Liu W, Li Z, Zheng Y, Zhu X, Wang H, Wang Y, Lin Q, Wu Q, Pang Y, Shen Z, Chen H (2021) Boosting supercapacitive performance of flexible carbon via surface engineering. J Colloid Interface Sci 602:636–645

    Article  CAS  PubMed  Google Scholar 

  63. Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375

    Article  CAS  Google Scholar 

  64. Lou G, Pei G, Wu Y, Lu Y, Wu Y, Zhu X, Pang Y, Shen Z, Wu Q, Fu S, Chen H (2021) Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors. Chem Eng J 413:127502

    Article  CAS  Google Scholar 

  65. Li T, Jiao X, You T, Dai F, Zhang P, Yu L, Ding L, Zhang L, Wen Z, Wu Y, Wu P (2019) Hexagonal boron nitride nanosheet/carbon nanocomposite as a high-performance cathode material towards aqueous asymmetric supercapacitors. Ceram Int 45:4283–4289

    Article  Google Scholar 

  66. Algharaibeh Z, Pickup PG (2011) An asymmetric supercapacitor with anthraquinone and dihydroxybenzene modified carbon fabric electrodes. Electrochem commun 13:147–149

    Article  CAS  Google Scholar 

  67. Chen H, Zheng Y, Zhu X, Hong W, Tong Y, Lu Y, Pei G, Pang Y, Shen Z, Guan C (2021) Bamboo-derived porous carbons for Zn-ion hybrid supercapacitors. Mater Res Bull 139:111281

    Article  CAS  Google Scholar 

  68. Roldán S, Barreda D, Granda M, Menéndez R, Santamaría R, Blanco C (2015) An approach to classification and capacitance expressions in electrochemical capacitors technology. Phys Chem Chem Phys 17:1084–1092

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

SB would like to thank Dr. Ramesh Gardas, IIT Madras, for useful discussions. SB also would like to acknowledge Dr. M. Raja for scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kothandaraman Ramanujam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahma, S., Ramanujam, K. Combination of redox-active natural indigo dye and bio-derived carbon from ridge gourd fruit for high-performance asymmetric supercapacitors. Ionics 28, 1427–1440 (2022). https://doi.org/10.1007/s11581-021-04433-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04433-y

Keywords

Navigation