Skip to main content
Log in

Transportation of calcium ions through chemically modified nanochannels in a polymeric membrane

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Synthetic ion channels fabricated on PET membrane are gaining considerable attention in the field of bioinspired devices. These bioinspired devices can mimic the gating functions of biological ion channels. In the present study, the synthesized nanochannels in the polymer membrane have been used for the transportation of the calcium ions through them under the influence of applied voltage(s). Ion irradiation followed by chemical etching has been used for the fabrication of the ion channels. Changes due to ion irradiation and chemical etching (with different etching rates) have been investigated by field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) and X-ray diffraction techniques. The porous membrane obtained by etching for longer duration has been used for ions’ selection and calcium ions’ transportation. Aqueous calcium perchlorate electrolyte (with different concentrations), similar to the myocyte, has been used. The multiple-ion channels present in the membrane respond simultaneously and the resultant current is due to the transportation of the ions as an outcome of their interaction with the charges (COO) present on the channelś’ walls. The transportation rate of cation(s) and the anion(s) accumulated outside the membrane (and hence the nanochannels) is reflected in the current behaviour. Effect of concentration as well as electrical gradient on the ion transportation has been studied. Ion current rectification behaviour of these voltage-gated calcium nanochannels with different anions has also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Catterall WA (1980) Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol 20:15–43

    Article  CAS  Google Scholar 

  2. Sakai N, Matile S (2013) Synthetic ion channels. Langmuir 29:9031–9040

    Article  CAS  Google Scholar 

  3. Gokel GW, Negin S (2013) Synthetic ion channels: from pores to biological applications. Acc Chem Res 46:2824–2833

    Article  CAS  Google Scholar 

  4. Ramírez P, Aguilella-Arzo M, Alcaraz A, Cervera J, Aguilella VM (2006) Theoretical description of the ion transport across nanopores with titratable fixed charges: analogies between ion channels and synthetic pores. Cell Biochem Biophys 44:287–312

    Article  Google Scholar 

  5. Perez Sirkin YA, Tagliazucchi M, Szleifer I (2020) Transport in nanopores and nanochannels: some fundamental challenges and nature-inspired solutions. Mater Today Adv 5:100047

    Article  Google Scholar 

  6. Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A (2012) Modeling and simulation of ion channels. Chem Rev 112:6250–6284

    Article  CAS  Google Scholar 

  7. Apel P (2001) Track etching technique in membrane technology. Radiat Meas 34:559–566

    Article  CAS  Google Scholar 

  8. Blonskaya IV, Lizunov NE, Olejniczak K, Orelovich OL, Yamauchi Y, Toimil-Molares ME, Trautmann C, Apel PY (2021) Elucidating the roles of diffusion and osmotic flow in controlling the geometry of nanochannels in asymmetric track-etched membranes. J Membr Sci 618:118657

    Article  CAS  Google Scholar 

  9. Kaya D, Kececi K (2020) Review-track-etched nanopores polymeric membranes as sensor: a review. J Electrochem Soc 167:037543

    Article  CAS  Google Scholar 

  10. Wen Q, Yan D, Liu F, Wang M, Ling Y, Wang P, Kluth P, Schauries D, Trautmann C, Apel P, Guo W, Xiao G, Liu J, Xue J, Wang Y (2016) Highly selective ionic transport through subnanometer pores in polymer films. Adv Func Mater 26:5796–5803

    Article  CAS  Google Scholar 

  11. Sahu S, Di Ventra M, Zwolak M (2017) Dehydration as a universal mechanism for ion selectivity in graphene and other atomically thin pores. Nano Lett 17:4719–4724

    Article  CAS  Google Scholar 

  12. Negi S, Prasad A, Chandra A (2019) Chaotic behavior of ionic transportation through synthetic ion channels. Int J Bifurcation Chaos 29:1950107

    Article  Google Scholar 

  13. Negi S, Chandra A (2020) Aqueous electrolytes’ transport through nanopores of polymeric membrane. Radiat Eff Defects Solids 175:257–267

    Article  CAS  Google Scholar 

  14. Chandra A, Rawat S, Saha B, Prasad A (2012) Chaotic motion of ions in polymer gel electrolytes: first observations. Solid State Ionics 225:751–754

    Article  CAS  Google Scholar 

  15. Gillespie D, Boda D, Apel P, Siwy ZS (2008) Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing. Biophys J 95:609–619

    Article  CAS  Google Scholar 

  16. Siwy ZS, Powell MR, Petrov A, Kalman E, Trautmann C, Eisenberg RS (2006) Calcium-induced voltage gating in single conical nanopores. Nano Lett 6:1729–1734

    Article  CAS  Google Scholar 

  17. Powell MR, Sullivan M, Vlassiouk I, Constantin D, Sudre O, Martens CC, Eisenberg RS, Siwy ZS (2007) Nanoprecipitation-assisted ion current oscillations. Nat Nanotechnol 3:51–57

    Article  Google Scholar 

  18. He Y, Gillespie D, Boda D, Vlassiouk I, Eisenberg RS, Siwy ZS (2009) Tuning transport properties of nanofluidic devices with local charge inversion. J Am Chem Soc 131:5194–5202

    Article  CAS  Google Scholar 

  19. Siwy ZS, Powell MR, Kalman E, Astumian RD, Eisenberg RS (2006) Negative incremental resistance induced by calcium in asymmetric nanopores. Nano Lett 6:473–477

    Article  CAS  Google Scholar 

  20. Shah VN, Chagot B, Chazin WJ (2006) Calcium-dependent regulation of ion channels. Calcium Bind Proteins 1:203

    PubMed  PubMed Central  Google Scholar 

  21. Li Y, Xiong Y, Wang D, Li X, Chen Z, Wang C, Qin H, Liu J, Chang B, Qing G (2019) Smart polymer-based calcium-ion self-regulated nanochannels by mimicking the biological Ca2+-induced Ca2+ release process. NPG Asia Terials 11:46

    Article  CAS  Google Scholar 

  22. Ali M, Nasir S, Ramirez P, Cervera J, Mafe S, Ensinger W (2012) Calcium binding and ionic conduction in single conical nanopores with polyacid chains: model and experiments. ACS Nano 10:9247–9257

    Article  Google Scholar 

  23. Barger JP, Dillon PF (2016) Near-membrane electric field calcium ion dehydration. Cell Calcium 60:415–422

    Article  CAS  Google Scholar 

  24. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  25. Tang L, Gamal El-Din TM, Payandeh J, Martinez GQ, Heard TM, Scheuer T, Zheng N, Catterall WA (2014) Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505:56–62

    Article  Google Scholar 

  26. Wang M, Shen W, Ding S, Wang X, Wang Z, Wang Y, Liu F (2018) Coupled effect of dehydration and electrostatic interactions on selective ion transport through charged nanochannels. Nanoscale 10:18821–18828

    Article  CAS  Google Scholar 

  27. Williams RJP (2002) Calcium. Methods Mol Biol 172:21–49

    CAS  PubMed  Google Scholar 

  28. Korolkov IV, Mashentseva AA, Guven O, Niyazova DT, Barsbay M, Zdorovets MV (2014) The effect of oxidizing agents/systems on the properties of track-etched PET membranes. Polym Degrad Stab 107:150–157

    Article  CAS  Google Scholar 

  29. Steckenreiter T, Balanzat E, Fuess H, Trautmann C (1997) Chemical modifications of PET induced by swift heavy ions. Nucl Instrum Methods Phys Res Sect B 131:159–166

    Article  CAS  Google Scholar 

  30. Prasad SG, De A, De U (2011) Structural and optical investigations of radiation damage in transparent pet polymer films. Int J Spectrosc. https://doi.org/10.1155/2011/810936

    Article  Google Scholar 

  31. Liu C, Zhu Z, Jin Y, Sun Y, Hou M, Wang Z, Chen X, Zhang C, Jie, Liu J, Li B, Yanbin Y (2000) Chemical modifications in polyethylene terephthalate films induced by 35 MeV/u Ar ions. Nucl Instrum Methods B 166:641–645

    Article  Google Scholar 

  32. Tagliazucchi M, Szleifer I (2016) Chemically modified nanopores and nanochannels, William Andrew

  33. Sigworth JF (1994) Voltage gating of ion channels. Q Rev Biophys 27:1–40

    Article  CAS  Google Scholar 

  34. Lev AA, Korchev YE, Rostovtseva KT, Bashford LC, Edmonds TD, Pasternak AC (1993) Rapid switching of ion current in narrow pores: implications for biological ion channels. Proc R Soc Lond B 252:187–192

    Article  CAS  Google Scholar 

  35. Negi S (2021) Photo driven ion transport and pumping through synthetic nanochannels. Mater Today Commun 26:102127

    Article  CAS  Google Scholar 

  36. Gong X, Li J, Xu K, Wang J, Yang H (2010) A controllable molecular sieve for Na+ and K+ ions. J Am Chem Soc 132:1873–1877

    Article  CAS  Google Scholar 

  37. Fink D (2004) Fundamentals of ion-irradiated polymers, Springer Series in Materials Science, 63

  38. Kutuzau M, Kozlovskiy A, Borgekov D, Kenzhina I, Zdorovets M, Chernik A, Alisienok O, Shumskaya A, Kaniukov E (2019) Optimization of PET ion-track membranes parameters, Nano FIS 2017. Mater Today Proc 7:866–871

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The characterization facilities provided by University Science Instrumentation Centre (USIC), University of Delhi is gratefully acknowledged.

Funding

The authors received the financial support by the Alexander von Humboldt Foundation (Research Group Linkage programme), Germany. CSIR ((13(9052-A)/2019- Pool) for SN) and UGC (Senior Research Fellowship for SK) also provided financial support.

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Chandra.

Ethics declarations

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, S., Khurana, S. & Chandra, A. Transportation of calcium ions through chemically modified nanochannels in a polymeric membrane. Ionics 28, 1219–1229 (2022). https://doi.org/10.1007/s11581-021-04391-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04391-5

Keywords

Navigation