Skip to main content

Advertisement

Log in

Investigations of redox-active polyoxomolybdate embedded polyaniline-based electrode material for energy application

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Higher capacitance supercapacitors have received considerable attention, including their massive power density, high stability, and long cycle life. On the other hand, polymers have been known for their energy storage device application because of the pseudocapacitance behavior resulting from the extended conjugation over the polymer backbone. Here, we report a simple chemical bath deposition method for the synthesis of two polyoxometalates (H4[PVMo11O40] and H5[PV2Mo10O40]) impregnated polyaniline (PAni) composite (PVMo11@PAni and PV2Mo10@PAni) for electrochemical supercapacitors. Various analytical methods characterized the electrode materials, e.g., Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD) method, and the morphological features of those electrodes were acquired by field emission scanning microscopy (FESEM). The exceptionally high average capacitance of 1371 F g−1 was obtained for the composite PVMo11@PAni electrode at a 3 A g−1 current density and 1 V potential window with an energy density of 137.5 W h kg−1. The PVMo11@PAni composite electrode showed almost 4.3 times the higher energy density than pure PAni and 2.3 times higher than PV2Mo10@PAni. In contrast, PV2Mo10@PAni composite showed 1.9 times more energy density than pure PAni composite electrode. Interestingly, high average capacitance, charge–discharge rates, and high energy density with high-level power delivery make them promising electrode candidates for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S Chu Y Cui N Liu 2016 The path towards sustainable energy Nat Mater 16 16 22

    PubMed  Google Scholar 

  2. J-G Wang F Kang B Wei 2015 Engineering of MnO2-based nanocomposites for high-performance supercapacitors Prog Mater Sci 74 51 124

    CAS  Google Scholar 

  3. W Du X Wang J Zhan X Sun L Kang F Jiang X Zhang Q Shao M Dong H Liu 2019 Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors Electrochim Acta 296 907 915

    CAS  Google Scholar 

  4. P Simon Y Gogotsi 2008 Materials for electrochemical capacitors Nat Mater 7 845 854

    CAS  PubMed  Google Scholar 

  5. G Yu X Xie L Pan Z Bao Y Cui 2013 Hybrid nanostructured materials for high-performance electrochemical capacitors Nano Energy 2 213 234

    CAS  Google Scholar 

  6. JR Miller AF Burke 2008 Electrochemical capacitors: challenges and opportunities for real-world applications, Electrochem Soc Interface 17 53 57

    CAS  Google Scholar 

  7. US Department of Energy. Basic Research Needs for Electrical Energy Storage<(www.sc.doe.gov/bes/reports/abstracts.html#EES2007)>(2007).

  8. A Kathalingam S Ramesh HM Yadav JH Choi HS Kim HS Kim 2020 Nanosheet-like ZnCo2O4@ nitrogen doped graphene oxide/polyaniline composite for supercapacitor application: effect of polyaniline incorporation Journal of Alloys and Compounds 830 154734

    CAS  Google Scholar 

  9. Z Li L Gong 2020 Research progress on applications of polyaniline (PANI) for electrochemical energy storage and conversion Materials 13 3 548

    CAS  PubMed Central  Google Scholar 

  10. K Xie M Zhang Y Yang L Zhao W Qi 2018 Synthesis and supercapacitor performance of polyaniline/nitrogen-doped ordered mesoporous carbon composites Nanoscale Res Lett 13 1 1 8

    Google Scholar 

  11. HP Cong XC Ren P Wang SH Yu 2013 Flexible graphene–polyaniline composite paper for high-performance supercapacitor Energy Environ Sci 6 4 1185 1191

    CAS  Google Scholar 

  12. G Konwar SC Sarma D Mahanta SC Peter 2020 Polyaniline hybrid nanofibers via green interfacial polymerization for all-solid-state symmetric supercapacitors ACS Omega 5 24 14494 14501

    CAS  PubMed  PubMed Central  Google Scholar 

  13. J Banerjee K Dutta MA Kader SK Nayak 2019 An overview on the recent developments in polyaniline-based supercapacitors Polym Adv Technol 30 8 1902 1921

    CAS  Google Scholar 

  14. GA Snook P Kao AS Best 2011 Conducting- polymer-based supercapacitor devices and electrodes J Power Sources 196 1 12

    CAS  Google Scholar 

  15. L Gilchrist 1903 The electrolysis of acid solutions of aniline J Phys Chem 8 539 547

    Google Scholar 

  16. HY Lee JB Goodenough 1999 Supercapacitor behavior with KCl electrolyte J Solid State Chem 144 220 223

    CAS  Google Scholar 

  17. A Laforgue P Simon J-F Fauvarque 2001 Chemical synthesis and characterization of fluorinated polyphenylthiophenes: application to energy storage Synth Met 123 311 319

    CAS  Google Scholar 

  18. K Naoi S Suematsu A Manago 2000 Electrochemistry of poly(1,5-diaminoanthraquinone) and its application in electrochemical capacitor materials J Electrochem Soc 147 420 426

    CAS  Google Scholar 

  19. J Banerjee, K Dutta, MA Kader, SK Nayak (2019) An overview of the recent developments in polyaniline-based supercapacitors, Polym. Adv Technol 1–20.

  20. W Nelson CO Baker X Huang RB Kaner 2017 Polyaniline nanofibers: broadening applications for conducting polymers Chem Soc Rev 46 1510 1525

    PubMed  Google Scholar 

  21. A Mirmohseni MS Seyed Dorraji MG Hosseini 2012 Influence of metal oxide nanoparticles on pseudocapacitive behavior of wet-spun polyaniline-multiwall carbon nanotube fibers Electrochimica Acta 70 182 192

    CAS  Google Scholar 

  22. Z-A Hu Y-L Xie Y-X Wang L-P Mo Y-Y Yang Z-Y Zhang 2009 Polyaniline/SnO2 nanocomposite for supercapacitor applications Mater Chem Phys 114 990 995

    CAS  Google Scholar 

  23. H Wang Z Guo S Yao Z Li W Zhang 2017 Design and synthesis of ternary graphene/polyaniline/Co3O4 hierarchical nanocomposites for supercapacitors Int J Electrochem Sci 12 3721 3731

    CAS  Google Scholar 

  24. R Gottam, P Srinivasan, One-step oxidation of aniline by peroxotitanium acid to polyaniline–titanium dioxide: a highly stable electrode for a supercapacitor, Applied polymer science, 132 (2015).

  25. R Bolagam R Boddula P Srinivasan 2017 Hybrid material of PANI with TiO2-SnO2: pseudocapacitor electrode for higher performance supercapacitors ChemistrySelect 2 65 73

    CAS  Google Scholar 

  26. A Eftekhari L Li Y Yang 2017 Polyaniline supercapacitors J Power Sources 347 86 107

    CAS  Google Scholar 

  27. N Anwar A Sartorel M Yaqub K Wearen F Laffer G Armstrong C Dickinson M Bonchio T McCormac 2014 Surface immobilization of a tetra-ruthenium substituted polyoxometalate water oxidation catalyst through the employment of conducting polypyrrole and the layer-by-layer (LBL) technique ACS Appl Mater Interfaces 6 8022 8031

    CAS  PubMed  Google Scholar 

  28. M Sadakane E Steckhan 1998 Electrochemical properties of polyoxometalates as electrocatalysts Chem Rev 98 219 238

    CAS  PubMed  Google Scholar 

  29. D Mercier S Boujday C Annabi R Villanneau CM Pradier A Proust 2012 Bifunctional polyoxometalates for planar gold surface nanostructuration and protein immobilization J Phys Chem C 116 13217 13224

    CAS  Google Scholar 

  30. N Kawasaki H Wang R Nakanishi S Hamanaka R Kitaura H Shinohara T Yokoyama H Yoshikawa K Awaga 2011 Nanohybridization of polyoxometalate clusters and single-wall carbon nanotubes: applications in molecular cluster batteries Angew Chem Int Ed 50 3471 3474

    CAS  Google Scholar 

  31. Y Ji L Huang J Hu C Streb Y-F Song 2015 Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage, and sensor systems Energy Environ Sci 8 776 789

    CAS  Google Scholar 

  32. T Liu L Finn M Yu H Wang T Zhai X Lu Y Tong Y Li 2014 Polyaniline, and polypyrrole pseudocapacitor electrodes with excellent cycling stability Nano Lett. 14 2522 2527

    CAS  PubMed  Google Scholar 

  33. S Herrmann N Aydemir F Nägele D Fantauzzi T Jacob J Travas-Sejdic C Streb 2017 Enhanced capacitive energy storage in polyoxometalate-doped polypyrrole Adv Funct Mater 27 170088

    Google Scholar 

  34. P Gómez-Romero M Chojak K Cuentas-Gallegos JA Asensio PJ Kulesza N Casañ-Pastor M Lira-Cantu 2003 Hybrid organic-inorganic nanocomposite materials for application in solid-state electrochemical supercapacitors Electrochem. Commun. 5 149 153

    Google Scholar 

  35. J Vaillant M Lira-Cantu K Cuentas-Gallegos N Casañ-Pastor P Gómez-Romero 2006 Chemical synthesis of hybrid materials based on PAni and PEDOT with polyoxometalates for electrochemical supercapacitors Prog Solid State Chem 34 147 159

    CAS  Google Scholar 

  36. AM White RCT Slade 2003 Investigation of vapor-grown conductive polymer/heteropolyacid electrodes Electrochim Acta 48 2583 2588

    CAS  Google Scholar 

  37. A Cuentas-Gallegos R Martinez-Rosales M Baibarac P Gómez-Romero ME Rincon 2007 Electrochemical supercapacitors based on novel hybrid materials made of carbon nanotubes and polyoxometalates Electrochem Commun 9 2088 2092

    CAS  Google Scholar 

  38. AM White RCT Slade 2003 Polymer electrodes doped with heteropolymetalates and their use within solid-state supercapacitors Synth Met 139 123 131

    CAS  Google Scholar 

  39. GM Suppes CG Cameron MS Freund 2010 A Polypyrrole/phosphomolybdic acid/ poly (3, 4-ethylenedioxythiophene) /phosphotungstic acid asymmetric supercapacitor J Electrochem Soc 157 A1030 A1034

    CAS  Google Scholar 

  40. AM White RCT Slade 2004 Electrochemically and vapor grown electrode coatings of poly(3,4-ethylenedioxythiophene) doped with heteropolyacids Electrochim Acta 49 861 865

    CAS  Google Scholar 

  41. M Lira-Cantú P Gomez-Romero 1999 Synthesis and characterization of intercalate phases in the organic-inorganic polyaniline/V2O5 system J Solid State Chem 147 601 608

    Google Scholar 

  42. A Manivel AM Siri KA Alamry R Lana-Villarreal S Anandan 2014 Interfacial synthesized Pani-PMo12 hybrid material for supercapacitor applications Bull Mater Sci 37 861 869

    CAS  Google Scholar 

  43. G Siné CC Hui A Kuhn PJ Kulesza K Miecznikowski M Chojak A Paderewski A Lewera 2003 Spatial control of polyaniline electrodeposition by patterned polyoxometalate monolayers J Electrochem Soc 150 C351 C355

    Google Scholar 

  44. J Lin S Yan X Zhang Y Liu J Lian H Lin S Han 2019 Facile preparation of holey Anderson-type polyoxometalate/polyaniline/graphene nanocomposites for supercapacitors NANO 14 04 1950049

    CAS  Google Scholar 

  45. T He W Zhang P Manasa F Ran 2020 Quantum dots of molybdenum nitride embedded in continuously distributed polyaniline as novel electrode material for supercapacitor Journal of Alloys and Compounds 812 152138

    CAS  Google Scholar 

  46. Y Tan Y Liu L Kong L Kang C Xu F Ran 2017 In situ doping of PANI nanocomposites by gold nanoparticles for high-performance electrochemical energy storage J Appl Polym Sci 134 38 45309

    Google Scholar 

  47. F Ran Y Tan W Dong Z Liu L Kong L Kang 2018 In situ polymerization and reduction to fabricate gold nanoparticle-incorporated polyaniline as supercapacitor electrode materials Polym Adv Technol 29 6 1697 1705

    CAS  Google Scholar 

  48. YT Tan F Ran LB Kong J Liu L Kang 2012 Polyaniline nanoparticles grown on the surface of carbon microspheres aggregations for electrochemical supercapacitors Synth Met 162 1–2 114 118

    CAS  Google Scholar 

  49. O Akba F Güzel K Yurdakoc B Gümgüm Z Tez 1997 Preparation and characterization of polyoxometallates of molybdenum, tungsten and their salts, Inorganic and Metal-Organic Chemistry 27 1399 1415

    CAS  Google Scholar 

  50. M Barth M Lepkowski S Lefrant 1999 Electrochemical behavior of polyaniline films doped with heteropolyanions of Keggin structure Electrochim Acta 44 2117 2123

    CAS  Google Scholar 

  51. P Chandrasekhar RW Gumbs 1991 Electro syntheses, electro syntheses, spectroelectrochemical, electrochemical, and chronovoltabsorptometric properties of family of poly (aromatic amines), novel processible conducting polymers: I. Poly (benzidines) J Electrochem Soc 138 1337 1345

    CAS  Google Scholar 

  52. AK Cuentas-Gallegos M Lira-Cantú N Casañ-Pastor P Gómez-Romero 2005 Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors Adv Funct Mater 15 1125 1133

    CAS  Google Scholar 

  53. AA Vannathan S Maity T Kella D Shee PP Das SS Mal 2020 In situ vanadophosphomolybdate impregnated into conducting polypyrrole for supercapacitor Electrochim Acta 364 137286 

    Article  CAS  Google Scholar 

  54. SG Pawar SL Patil MA Chougule AT Mane DM Jundale VB Patil 2010 Synthesis and characterization of polyaniline: TiO2 nanocomposites Int J Polym Mater 59 777 785

    CAS  Google Scholar 

  55. A Mostafaei A Zolriasatein 2012 Zolriasatein, Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods Prog Nat Sci 22 273 280

    Google Scholar 

  56. S Boudjema E Vispe A Choukchou-Braham JA Mayoral R Bachir JM Fraile 2015 Preparation and characterization of activated montmorillonite clay supported 11-molybdo-vanado-phosphoric acid for cyclohexene oxidation RSC Adv 5 6853 6863

    CAS  Google Scholar 

  57. I Sapurina A Au BZ Osadchev M Volchek A Trchova J Riede 2002 In-situ polymerized polyaniline files: 5 Brush-like chain ordering Synth Met 129 29

    CAS  Google Scholar 

  58. AF Diaz JA Logan 1980 Electroactive polyaniline films J Electroanal Chem Interf Electrochem 111 111 114

    CAS  Google Scholar 

  59. VS Jamadade DS Dhawale CD Lokhande 2010 Studies on electrosynthesized leucoemeraldine, emeraldine and pernigraniline forms of polyaniline films and their supercapacitive behavior Synth Met 160 955 960

    CAS  Google Scholar 

  60. DS Dhawale RR Salunkhe VS Jamadade DP Dubal SM Pawar CD Lokhande 2010 Hydrophilic polyaniline nanofibrous architecture using electrosynthesis method for supercapacitor application Curr Appl Phys 10 904 909

    Google Scholar 

  61. J Zhang LB Kong B Wang YC Luo 2009 In-situ electrochemical polymerization of multi-walled carbon nanotubes/polyaniline composites films for electrochemical supercapacitors Synth Met 159 260 266

    CAS  Google Scholar 

  62. G-R Li Z-P Feng J-H Zhong Z-L Wang Y-X Tong 2010 Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances Macromolecules 43 2178 2183

    CAS  Google Scholar 

  63. DP Dubal NR Chodankar A Vinu D-H Kim P Gomez-Romero 2017 Asymmetric supercapacitors based on reduced graphene oxide with different polyoxometalates as positive and negative electrodes Chemsuschem 10 2742 2750

    CAS  PubMed  Google Scholar 

  64. H-Y Chen R Al-Oweini J Friedl CY Lee L Li U Kortz U Stimming M Srinivasan 2015 A novel SWCNT-polyoxometalates nanohybrid materials as an electrode for electrochemical supercapacitors Nanoscales 7 7934 7941

    CAS  Google Scholar 

  65. T Morishita Y Soneda H Hatori M Inagaki 2007 Carbon-coated tungsten and molybdenum carbides for the electrode of an electrochemical capacitor Electrochim Acta 52 2478 2484

    CAS  Google Scholar 

  66. W Sun XY Chen 2009 Fabrication, and tests of a novel three-dimensional micro supercapacitor Microelectron Eng 86 1307 1310

    CAS  Google Scholar 

  67. V Ruiz J Suárez-Guevara P Gomez-Romero 2012 Hybrid electrodes based on polyoxometalate–carbon materials for electrochemical supercapacitors Electrochem Commun 24 35 38

    CAS  Google Scholar 

  68. J Suárez-Guevara V Ruiz P Gomez-Romero 2014 Hybrid energy storage: high voltage aqueous supercapacitors based on activated carbon–phosphotungstate hybrid materials J Mater Chem A 2 1014 1021

    Google Scholar 

  69. Y Liu Y Ma S Guang H Xu X Su 2014 Facile fabrication of three-dimensional highly ordered structural polyaniline–graphene bulk hybrid materials for high-performance supercapacitor electrodes J Mater Chem A 2 813 823

    CAS  Google Scholar 

  70. S Zhang N Pan 2014 Supercapacitors performance evaluation Adv Energy Mater 5 1401401

    Google Scholar 

  71. KS Ryu KM Kim N-G Park YJ Park SH Chang 2002 Symmetric redox supercapacitor with conducting polyaniline electrodes J Power Sources 103 305 309

    CAS  Google Scholar 

  72. J Zhang XS Zhao 2012 On the configuration of supercapacitors for maximizing electrochemical performance Chemsuschem 5 818 841

    CAS  PubMed  Google Scholar 

  73. J Yan Z Fan W Sun G Ning T Wei Q Zhang R Zhang L Zhi F Wei 2012 Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density Adv Funct Mater 22 2632 2641

    CAS  Google Scholar 

  74. V Khomenko E Raymundo-Piñero F Béguin 2006 Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in an aqueous medium J Power Sources 153 183 190

    CAS  Google Scholar 

Download references

Funding

This work is supported by the Council of Scientific and Industrial Research (CSIR) under scheme 01/ (2906)/17/EMR-II, and A. A. V. thanks to the National Institute of Technology Karnataka for financial assistance to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sib Sankar Mal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3598 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vannathan, A.A., Kella, T., Shee, D. et al. Investigations of redox-active polyoxomolybdate embedded polyaniline-based electrode material for energy application. Ionics 28, 1295–1310 (2022). https://doi.org/10.1007/s11581-021-04390-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04390-6

Keywords

Navigation