Skip to main content
Log in

Preparation and electrochemical performances of ZnMoO4-ZnFe2O4 composite electrode materials

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

As a typical transition metal oxide anode material, ZnMoO4 can deliver a higher theoretical capacity of 951.6 mAh g−1 due to its variable oxidation state and alloying reaction. However, lower conductivity and huge volumetric expansion restrict its further development. Herein, the modified sol–gel method is applied to synthesize a series of (1-x)ZnMoO4-xZnFe2O4 (x = 0.1, 0.2, 0.3, 0.4, and 0.5) composites. The effects of compound proportion of ZnFe2O4 on the crystal phase structure and morphology for ZnMoO4 have been investigated in detail. All the composites have been conducted on electrochemical measurements, and the results illustrate that the composites display better electrochemical performance than that of ZnMoO4. Especially for 0.6ZnMoO4-0.4ZnFe2O4, it can deliver a capacity of 550.7 mAh g−1 after 500 cycles at a current density of 200 mA g−1. Moreover, it also presents the higher capacity at higher current density. The improvement of electrochemical performance should be attributed to the synergistic effect of ZnFe2O4 and ZnMoO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbas Q, Mirzaeian M, Hunt MRC, Hall P, Raza R (2020) Current state and future prospects for electrochemical energy storage and conversion systems. Energies 13:5847

    Article  CAS  Google Scholar 

  2. Cao K, Jin T, Yang L, Jiao L (2017) Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mater Chem Front 1:2213–2242

    Article  CAS  Google Scholar 

  3. Croguennec L, Rosa Palacin M (2015) Recent achievements on inorganic electrode materials for lithium-ion batteries. J Am Chem Soc 137:3140–3156

    Article  CAS  Google Scholar 

  4. Lee B-S (2020) A review of recent advancements in electrospun anode materials to improve rechargeable lithium battery performance. Polymers 12:2035

    Article  CAS  Google Scholar 

  5. Li M, Lu J, Chen Z, Amine (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561

    Article  Google Scholar 

  6. Lu J, Chen Z, Feng P, Cui Y, Amine K (2018) High-performance anode materials for rechargeable lithium-ion batteries. Electrochem Energy R 1:35–53

    Article  CAS  Google Scholar 

  7. Hou J, Inganäs O, Friend RH, Feng G (2018) Organic solar cells based on non-fullerene acceptors. Nat Mater 17:119–128

    Article  CAS  Google Scholar 

  8. Gottesfeld S, Dekel DR, Page M, Bae C, Yan Y, Zelenay P, Kim YS (2018) Anion exchange membrane fuel cells: current status and remaining challenges. J Power Sources 375:170–184

    Article  CAS  Google Scholar 

  9. Liu M, Wang Q, Liu Z, Zhao Y, Lai X, Bi J, Gao D (2020) In-situ N-doped MnCO3 anode material via one-step solvothermal synthesis: doping mechanisms and enhanced electrochemical performances. Chem Eng J 383:123161

    Article  CAS  Google Scholar 

  10. Liang W, He S, Quan L, Wang L, Liu M, Zhao Y, Lai X, Bi J, Gao D, Zhang W (2019) Co0.8Zn0.2MoO4/C nanosheet composite: rational construction via a one-stone-three-birds strategy and superior lithium storage performances for lithium-ion batteries. ACS Appl Mater Inter 11:42139–42148

    Article  CAS  Google Scholar 

  11. Li K, Feng S, Jing C, Chen Y, Liu X, Zhang Y, Zhou L (2019) Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem Commun 55:13773–13776

    Article  CAS  Google Scholar 

  12. Li K, Liu X, Zheng T, Jiang D, Zhou Z, Liu C, Zhang X, Zhang Y, Losic D (2019) Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem Eng J 370:136–147

    Article  CAS  Google Scholar 

  13. Ma S, Jiang M, Tao P, Song C, Wu J, Wang J, Deng T, Shang W (2018) Temperature effect and thermal impact in lithium-ion batteries: a review. Prog Nat Sci 28:653–666

    Article  CAS  Google Scholar 

  14. Wang T, Li K, Le Q, Zhu S, Guo X, Jiang D, Zhang Y (2021) Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors. J Colloid Interf Sci 594:812–823

    Article  CAS  Google Scholar 

  15. Dong C, Dong W, Lin X, Zhao Y, Li R, Huang F (2020) Recent progress and perspectives of defective oxide anode materials for advanced lithium ion battery. Energy Chem 2:100045

    Article  Google Scholar 

  16. Zhang Y, Liu C, Gao X, Luo Z, Hu J, Zou G, Hou H, Xu Z, Ji X (2020) Revealing the activation effects of high valence cobalt in CoMoO4 towards highly reversible conversion. Nano Energy 68:104333

    Article  CAS  Google Scholar 

  17. Park GD, Hong JH, Lee J-K, Kang YC (2019) Yolk-shell-structured microspheres composed of N-doped-carbon-coated NiMoO4 hollow nanospheres as superior performance anode materials for lithium-ion batteries. Nanoscale 11:631–638

    Article  CAS  Google Scholar 

  18. Wei H, Yang J, Zhang Y, Qian Y, Geng H (2018) Rational synthesis of graphene-encapsulated uniform MnMoO4 hollow spheres as long-life and high-rate anodes for lithium-ion batteries. J Colloid Interf Sci 524:256–262

    Article  CAS  Google Scholar 

  19. Wang L, Liang W, He S, Liu M, Zhao Y, Zhang W, Chen Y, Lai X, Bi J, Gao D (2020) Realization of superior electrochemical performances for ZnMoO4 anode material through the construction strategy of 3D flower-like single crystalline. J Alloy Compd 816:152673

    Article  CAS  Google Scholar 

  20. Xue R, Hong W, Pan Z, Jin W, Zhao H, Song Y, Zhou J, Liu Y (2016) Enhanced electrochemical performance of ZnMoO4/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochim Acta 222:838–844

    Article  CAS  Google Scholar 

  21. Yue H, Du T, Wang Q, Shi Z, Dong H, Cao Z, Qiao Y, Yin Y, Xing R (2018) Biomimetic synthesis of polydopamine coated ZnFe2O4 composites as anode materials for lithium-ion batteries. ACS Omega 3:2699–2705

    Article  CAS  Google Scholar 

  22. Kim JG, Noh Y, Kim Y, Lee S, Kim WB (2019) Formation of ordered macroporous ZnFe2O4 anode materials for highly reversible lithium storage. Chem Eng J 372:363–372

    Article  CAS  Google Scholar 

  23. Yu M, Huang Y, Wang K, Han X, Wang M, Zhu Y, Liu L (2018) Complete hollow ZnFe2O4 nanospheres with huge internal space synthesized by a simple solvothermal method as anode for lithium ion batteries. Appl Surf Sci 462:955–962

    Article  CAS  Google Scholar 

  24. Das D, Mitra A, Jena S, Majumder SB, Basu RN (2018) Electrophoretically deposited ZnFe2O4-carbon black porous film as a superior negative electrode for lithium-ion battery. ACS Sustain Chem Eng 6:17000–17010

    Article  CAS  Google Scholar 

  25. Wei D, Xu F, Xu J, Fang J, Wang G, Koh SW, Sun Z (2019) A critical electrochemical performance descriptor of ferrites as anode materials for Li-ion batteries: inversion degree. Ceram Int 45:24538–24544

    Article  CAS  Google Scholar 

  26. Hou L, Hua H, Lian L, Cao H, Zhu S, Yuan C (2015) Green template-free synthesis of hierarchical shuttle-shaped mesoporous ZnFe2O4 microrods with enhanced lithium storage for advanced Li-ion batteries. Chem-Eur J 21:13012–13019

    Article  CAS  Google Scholar 

  27. Dong C, Gao W, Jin B, Zhang W, Wen Z, Jin E, Jeong S, Jiang Q (2020) Hydrangea-like microspheres as anodes toward long-life and high-capacity lithium storage. J Mater Sci 55:12151–12164

    Article  CAS  Google Scholar 

  28. Wan L, Shen JJ, Zhang Y, Li XC (2017) Novel ZnMoO4/reduced graphene oxide hybrid as a high-performance anode material for lithium ion batteries. J Alloy Compd 708:713–721

    Article  CAS  Google Scholar 

  29. Gong C, Bai Y-J, Feng J, Tang R, Qi Y-X, Fan R-H (2013) Enhanced electrochemical performance of FeWO4 by coating nitrogen-doped carbon. ACS Appl Mater Inter 5:4209–4215

    Article  CAS  Google Scholar 

  30. Wei W, Yang S, Zhou H, Lieberwirth I, Feng X, Müllen K (2013) 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25:2909–2914

    Article  CAS  Google Scholar 

  31. Xu J, Gu S, Fan L, Xu P, Lu B (2016) Electrospun lotus root-like CoMoO4@graphene nanofibers as high-performance anode for lithium ion batteries[J]. Electrochim Acta 196:125–130

    Article  CAS  Google Scholar 

  32. Li JF, Xu WJ, Guo C, Li M, Zhang L (2018) Effect of Ni content in NixMn1-xCO3 (x = 0, 0.20, 0.25, 0.33) submicrospheres on the performances of rechargeable lithium ion batteries. Electrochim Acta 276:333–342

    Article  CAS  Google Scholar 

  33. Ma Q, Li X, Li G, Shao Z (2020) Synthesis and electrochemical properties of cubic-like ZnMoO4 anode materials. J Mater Sci 55:13905–13915

    Article  CAS  Google Scholar 

  34. Fei J, Sun Q, Li J, Cui Y, Huang J, Hui W, Hu H (2017) Synthesis and electrochemical performance of α-ZnMoO4 nanoparticles as anode material for lithium ion batteries. Mater Lett 198:4–7

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Sichuan Science and Technology Program (2019YJ0525), the Scientific Research Fund of Sichuan Provincial Education Department of Sichuan Province (16TD0007), and Open Foundation of Key Laboratory of Sichuan Province Higher Education System (SWWT2016-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhao or Daojiang Gao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Yang, Y., Zhou, P. et al. Preparation and electrochemical performances of ZnMoO4-ZnFe2O4 composite electrode materials. Ionics 28, 1285–1294 (2022). https://doi.org/10.1007/s11581-021-04387-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04387-1

Keywords

Navigation