Skip to main content
Log in

The preparation of carbon-coated Si nanofiber deposited on carbon nanofiber/natural microcrystalline graphite as the anode for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Silicon (Si) is one of the most potential candidates for the next-generation anode material for lithium-ion batteries. Nevertheless, the practical application of Si anode is limited by low conductivity and large volume expansion during charge/discharge processes. Herein, hierarchical Si/C composites are prepared via two-step chemical vapor deposition method and one-step in situ polymerization, in which N-doped carbon-coated Si nanofiber was deposited on carbon nanofiber/natural microcrystalline graphite. Such structural design is beneficial to restrict the volume expansion of Si and enhance the conductivity of electrode material. Moreover, derived silicon carbide at the interface between carbon nanofiber with silicon greatly improves the bonding ability, preventing the separation of Si from carbon fibers. Therefore, the composites can provide a reversible capacity of 528.3 mA h g−1 after 100 cycles at a current density of 100 mA g−1 and display good rate capability (the capacity retention rate is 89.8% after charging and discharging under different currents).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used during the current study are available from the corresponding author on reasonable request.

Code availability

Available.

References

  1. Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100(1–2):101–106

    Article  CAS  Google Scholar 

  2. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    Article  CAS  Google Scholar 

  3. Du C-F, Liang Q, Luo Y, Zheng Y, Yan Q (2017) Recent advances in printable secondary batteries. J Mater Chem A 5(43):22442–22458

    Article  CAS  Google Scholar 

  4. Du F, Wang KX, Chen JS (2015) Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J Mater Chem A 4(1):32–50

    Article  Google Scholar 

  5. Zhang MA, Zhang TF, Ma YF, Chen YS (2016) Latest development of nanostructured Si/C materials for lithium anode studies and applications. Energy Storage Mater 4:1–14

    Article  CAS  Google Scholar 

  6. Shi J, Liang Y, Li L, Peng Y, Yang H (2015) Evaluation of the electrochemical characteristics of silicon/lithium titanate composite as anode material for lithium ion batteries. Electrochim Acta 155:125–131

    Article  CAS  Google Scholar 

  7. Li XT, Yang DD, Hou XC, Shi JH, Peng Y, Yang HB (2017) Scalable preparation of mesoporous Silicon@C/graphite hybrid as stable anodes for lithium-ion batteries. J Alloy Compd 728:1–9

    Article  CAS  Google Scholar 

  8. Liu B, Huang P, Zhang Q, Huang QZ, Xie ZY (2020) Rational-design micro-nanostructure of porous carbon film/silicon nanowire/graphite microsphere composites for high-performance lithium-ion batteries. J Mater Sci 55(26):12165–12176

    Article  CAS  Google Scholar 

  9. Liu R, Shen C, Dong Y, Qin J, Wang Qi (2018) Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries. J Mater Chem A 6(30):14797–14804

    Article  CAS  Google Scholar 

  10. Chen S, Chen Z, Xu X, Cao C, Xia M, Luo Y (2018) Scalable 2D mesoporous silicon nanosheets for highperformance lithium-ion battery anode. SMALL 14 (12):1703361

  11. Tesfaye AT, Gonzalez-Rodriguez R, Coffer JL, Djenizian T (2017) Self-supported silicon nanotube arrays as an anode electrode for Li-ion batteries. ECS Trans 77(11):349–350

    Article  CAS  Google Scholar 

  12. Han Y, Zou J, Li Z, Wang W, Jie Y, Ma J, Tang B, Zhang Q, Cao X, Xu S, Wang ZL (2018) Si@void@C nanofibers fabricated using a self-powered electrospinning system for lithium-ion batteries. ACS Nano 12(5):4835–4843

    Article  CAS  PubMed  Google Scholar 

  13. Miao F, Miao R, Wu W, Cong W, Zang Y, Tao B (2018) A stable hybrid anode of graphene/silicon nanowires array for high performance lithium-ion battery. Mater Lett 228:262–265

    Article  CAS  Google Scholar 

  14. Ma C, Wang Z, Zhao Y, Li Y, Shi J (2020) A novel raspberry-like yolk-shell structured Si/C micro/nano-spheres as high-performance anode materials for lithium-ion batteries. J Alloy Compd 844:156201

    Article  CAS  Google Scholar 

  15. Chen S, Ma C, Zhu Y, Cao C (2020) Interpenetrated tunnel route in silicon/carbon hollow sphere anode to boost their lithium storage. Materials Chemistry Frontiers 4 (9):2782–2790

  16. Lw A, Hz B, Jy A, Xz A, Yr A, Yn A, Sc A (2017) Carbon coated mesoporous Si anode prepared by a partial magnesiothermic reduction for lithium-ion batteries. J Alloy Compd 716:204–209

    Article  Google Scholar 

  17. Chen S, Chen Z, Luo Y, Xia M, Cao C (2017) Silicon hollow sphere anode with enhanced cycling stability by a template-free method. Nanotechnology 28(16):165404

    Article  PubMed  Google Scholar 

  18. Palomino J, Varshney D, Weiner BR, Morell G (2015) Study of the structural changes undergone by hybrid nanostructured Si-CNTs employed as an anode material in a rechargeable lithium-ion battery. J Phys Chem C 119(36):21125–21134

    Article  CAS  Google Scholar 

  19. Bai XJ, Yu YY, Kung HH, Wang B, Jiang JM (2016) Si@SiOx/graphene hydrogel composite anode for lithium-ion battery. J Power Sources 306:42–48

    Article  CAS  Google Scholar 

  20. Wang M-S, Song W-L, Fan L-Z (2015) Three-dimensional interconnected network of graphene-wrapped silicon/carbon nanofiber hybrids for binder-free anodes in lithium-ion batteries. ChemElectroChem 2(11):1699–1706

    Article  CAS  Google Scholar 

  21. Huang P, Liu B, Zhang J, Liu M, Xie Z (2021) Silicon/carbon composites based on natural microcrystalline graphite as anode for lithium-ion batteries. Ionics 27(5):1957–1966

    Article  CAS  Google Scholar 

  22. Jang S-M, Miyawaki J, Tsuji M, Mochida I, Yoon S-H, Kang F-y (2010) Preparation of a carbon nanofiber/natural graphite composite and an evaluation of its electrochemical properties as an anode material for a Li-ion battery. New Carbon Mater 25(2):89–96

    Article  CAS  Google Scholar 

  23. Chen Y, Hu Y, Shao J, Shen Z, Chen R, Zhang X, He X, Song Y, Xing X (2015) Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries. J Power Sources 298:130–137

    Article  CAS  Google Scholar 

  24. Ikoma Y, Hayano K, Edalati K, Saito K, Guo Q, Horita Z, Aoki T, Smith DJ (2014) Fabrication of nanograined silicon by high-pressure torsion. J Mater Sci 49(19):6565–6569

    Article  CAS  Google Scholar 

  25. Ren Z, Wang Z, Chao C, Jia W, Fu X, Fan C, Qian G (2014) Preparation of carbon-encapsulated ZnO tetrahedron as an anode material for ultralong cycle life performance lithium-ion batteries. Electrochim Acta 146(5):52–59

    Article  CAS  Google Scholar 

  26. Guo R, Yue W, An Y, Ren Y, Yan X (2014) Graphene-encapsulated porous carbon-ZnO composites as high-performance anode materials for Li-ion batteries. Electrochim Acta 135:161–167

    Article  CAS  Google Scholar 

  27. Li J, Han L, Zhang X, Zhu G, Chen T, Lu T, Pan L (2019) Sb2O5/Co-containing carbon polyhedra as anode material for high-performance lithium-ion batteries. Chem Eng J 370:800–809

    Article  CAS  Google Scholar 

  28. Zhang Y, Hu K, Zhou Y, Xia Y, Yu N, Wu G, Zhu Y, Wu Y, Huang H (2019) A facile, one-step synthesis of silicon/silicon carbide/carbon nanotube nanocomposite as a cycling-stable anode for lithium ion batteries. Nanomaterials 9 (11):1624

  29. Liu W, Xu H, Qin H, Lv Y, Wang F, Zhu G, Lin F, Wang L, Ni C (2019) The effect of carbon coating on graphite@nano-Si composite as anode materials for Li-ion batteries. J Solid State Electrochem 23(12):3363–3372

    Article  CAS  Google Scholar 

  30. Sun C, Wang YJ, Gu H, Fan H, Zhang J (2020) Interfacial coupled design of epitaxial Graphene@SiC Schottky junction with built-in electric field for high-performance anodes of lithium ion batteries. Nano Energy 77:105092

    Article  CAS  Google Scholar 

  31. Xu ZL, Zhang B, Kim JK (2014) Electrospun carbon nanofiber anodes containing monodispersed Si nanoparticles and graphene oxide with exceptional high rate capacities. Nano Energy 6:27–35

    Article  Google Scholar 

  32. Zhou X, Wan LJ, Guo YG (2013) Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. Small 9(16):2684–2688

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Li J, Ding Z, Zhang X, Pan L (2019) In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage. Chem Eng J 378:122108

    Article  CAS  Google Scholar 

  34. Zhang X, Li J, Li J, Han L, Lu T, Zhang X, Zhu G, Pan L (2020) 3D TiO2@nitrogen-doped carbon/Fe7S8 composite derived from polypyrrole-encapsulated alkalized MXene as anode material for high-performance lithium-ion batteries. Chem Eng J 385:123394

    Article  CAS  Google Scholar 

  35. Wood KN, O’Hayre R, Pylypenko S (2014) Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ Sci 7(4):1212–1249

    Article  CAS  Google Scholar 

  36. Gan L, Guo H, Wang Z, Li X, Peng W, Wang J, Huang S, Su M (2013) A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries. Electrochim Acta 104:117–123

    Article  CAS  Google Scholar 

  37. Zhang H, Li X, Guo H, Wang Z, Zhou Y (2016) Hollow Si/C composite as anode material for high performance lithium-ion battery. Powder Technol 299:178–184

    Article  CAS  Google Scholar 

  38. Yim C-H, Courtel FM, Abu-Lebdeh Y (2013) A high capacity silicon-graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders. J Mater Chem A 1(28):8234–8243

    Article  CAS  Google Scholar 

  39. Lim S-Y (2019) Amorphous-silicon nanoshell on artificial graphite composite as the anode for lithium-ion battery. Solid State Sci 93:24–30

    Article  CAS  Google Scholar 

  40. Zhao H, Tu N, Zhang W, Zhang M, Wang J (2021) Novel synthesis of silicon/carbon nanotubes microspheres as anode additives through chemical vapor deposition in fluidized bed reactors. Scripta Mater 192:49–54

    Article  CAS  Google Scholar 

  41. Kim N, Chae S, Ma J, Ko M, Cho J (2017) Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nat Commun 8 (1):812

  42. Wang D, Gao M, Pan H, Wang J, Liu Y (2014) High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. Journal of Power Sources 256 (jun.15):190–199

  43. Xu Y, Zhu Y, Han F, Chao L, Wang C (2015) 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries. Adv Energy Mater 5(1):1–7

    Article  Google Scholar 

  44. Sun C, Deng Y, Wan L, Qin X, Chen G (2014) Graphene oxide-immobilized NH2-terminated silicon nanoparticles by cross-linked interactions for highly stable silicon negative electrodes. ACS Appl Mater Interfaces 6(14):11277

    Article  CAS  Google Scholar 

  45. Wetjen M, Pritzl D, Jung R, Solchenbach S, Ghadimi R, Gasteiger HA (2017) Differentiating the degradation phenomena in silicon-graphite electrodes for lithium-ion batteries. J Electrochem Soc 164(12):A2840–A2852

    Article  CAS  Google Scholar 

  46. Chen Y, Zeng S, Qian J, Wang Y, Cao Y, Yang H, Ai X (2014) Li+-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries. ACS Appl Mater Interfaces 6(5):3508–3512

    Article  CAS  Google Scholar 

  47. Yuca N, Cetintasoglu ME, Dogdu MF, Akbulut H, Tabanli S, Colak U, Taskin OS (2018) Highly efficient poly(fluorene phenylene) copolymer as a new class of binder for high-capacity silicon anode in lithium-ion batteries. Int J Energy Res 42(3):1148–1157

    Article  CAS  Google Scholar 

  48. Wan L, Tang Y, Chen L, Wang K, Pan L (2020) In-situ construction of g-C3N4/Mo2CTx hybrid for superior lithium storage with significantly improved Coulombic efficiency and cycling stability. Chem Eng J 410(6861):128349

    Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial supported by the National Key Research and Development Program of China (No.2019YFB1504502).

Author information

Authors and Affiliations

Authors

Contributions

Jiali Zhang contributed to the central ideal, carried the experiment, collected the data, performed the data analyses, and wrote the initial draft of the paper. The remaining authors carried out additional analyses and revised this paper.

Ethics declarations

Conflict of interest

There authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, B., Zhang, R. et al. The preparation of carbon-coated Si nanofiber deposited on carbon nanofiber/natural microcrystalline graphite as the anode for lithium-ion batteries. Ionics 28, 657–668 (2022). https://doi.org/10.1007/s11581-021-04380-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04380-8

Keywords

Navigation