Skip to main content

Advertisement

Log in

Porous carbon nanofibers prepared by low-cost and environmentally friendly ammonium chloride for high-performance Li–S batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Compared to conventional lithium batteries, lithium-sulfur (Li–S) batteries are not only low-cost and environmentally friendly but also have a high theoretical energy density. However, the insulating nature of sulfur materials and the poor cycle stability of Li–S batteries inhibit their commercialization. Herein, porous carbon nanofibers (PCNFs) were fabricated by a facile electrospinning method and used as a cathode hosting sulfur for Li–S batteries. The porous structure effectively restrained soluble polysulfides from migrating due to shuttle effect of lithium-sulfur batteries. With the PCNFs as the sulfur host, the PCNFs/S cathode exhibited excellent cycling stability. An initial specific capacity of 835 mAh g−1 at 0.1C and a reversible capacity of 98.6% after 100 cycles were achieved. This outstanding performance can be ascribed to the rational design of the electrode structure, which can increase the interfacial contact and provide a large number of electrochemically active sites for polysulfide storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dong Y, Guan S, Zhou X et al (2021) Co-intercalation of CTAB favors the preparation of Ti3C2Tx/PANI composite with improved electrochemical performance[J]. Ionics 27(6):2501–2508

    Article  CAS  Google Scholar 

  2. Peng L, Wei Z, Wan C et al (2020) A fundamental look at electrocatalytic sulfur reduction reaction[J]. Nat Catal 3(9):762–770

    Article  CAS  Google Scholar 

  3. Qie L, Manthiram A (2015) A facile layer-by-layer approach for high-areal-capacity sulfur cathodes[J]. Adv Mater 27(10):1694–1700

    Article  CAS  PubMed  Google Scholar 

  4. Su W (2018) Porous honeycomb-like carbon prepared by a facile sugar-blowing method for high-performance lithium-sulfur batteries[J]. Int J Electrochem Sci 13(6):6005–6014

    Article  CAS  Google Scholar 

  5. Zhang Y, Li M, Zhong S et al (2020) MoS2 wrapped MOFs-derived N-doped carbon nanorods as an effective sulfur host for high-performance lithium-sulfur batteries[J]. Ceram Int 46(7):9614–9621

    Article  CAS  Google Scholar 

  6. Qu Y, Zhang Z, Zhang X et al (2015) Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium–sulfur batteries[J]. Carbon 84(1):399–408

    Article  CAS  Google Scholar 

  7. Peng H, Wang X, Zhao Y et al (2017) Enhanced electrochemical performance of sulfur/polyacrylonitrile composite by carbon coating for lithium/sulfur batteries[J]. J Nanopart Res 19(10):1–8

    Article  CAS  Google Scholar 

  8. Pan H, Cheng Z, Chen J et al (2020) High sulfur content and volumetric capacity promised by a compact freestanding cathode for high-performance lithium–sulfur batteries[J]. Energy Storage Mater 27:435–442

    Article  Google Scholar 

  9. Wang J, Yang Y, Kang F (2015) Porous carbon nanofiber paper as an effective interlayer for high-performance lithium-sulfur batteries[J]. Electrochim Acta 168:271–276

    Article  CAS  Google Scholar 

  10. Kuzmenko V, Naboka O, Staaf H et al (2015) Capacitive effects of nitrogen doping on cellulose-derived carbon nanofibers[J]. Mater Chem Phys 160:59–65

    Article  CAS  Google Scholar 

  11. Cheng J, Song H, Pan Y et al (2018) 3D copper foam/bamboo charcoal composites as high sulfur loading host for lithium-sulfur batteries[J]. Ionics 24(12):4093–4099

    Article  CAS  Google Scholar 

  12. Gu X, Wang Y, Lai C et al (2014) Microporous bamboo biochar for lithium-sulfur batteries[J]. Nano Res 8(1):129–139

    Article  Google Scholar 

  13. Kalybekkyzy S, Mentbayeva A, Yerkinbekova Y et al (2020) Electrospun 3D structured carbon current collector for Li/S batteries[J]. Nanomaterials 10(4):745–758

    Article  CAS  PubMed Central  Google Scholar 

  14. Tesio AY, Gomez-Camer JL, Morales J et al (2020) Simple and sustainable preparation of nonactivated porous carbon from brewing waste for high-performance lithium-sulfur batteries[J]. Chemsuschem 13(13):3439–3446

    Article  CAS  PubMed  Google Scholar 

  15. Liu H, Wang Z, Wu Z et al (2020) Direct tuning of meso-/micro-porous structure of carbon nanofibers confining Sb nanocrystals for advanced sodium and potassium storage[J]. J Alloy Compd 833:155127

    Article  CAS  Google Scholar 

  16. Yang D, Ni W, Cheng J et al (2017) Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium–sulfur batteries[J]. Appl Surf Sci 413:209–218

    Article  CAS  Google Scholar 

  17. Strubel P, Thieme S, Biemelt T et al (2015) ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery[J]. Adv Func Mater 25(2):287–297

    Article  CAS  Google Scholar 

  18. Kalybekkyzy S, Mentbayeva A, Kahraman MV et al (2019) Flexible S/DPAN/KB nanofiber composite as binder-free cathodes for Li-S batteries[J]. J Electrochem Soc 166(3):A5396–A5402

    Article  CAS  Google Scholar 

  19. Wang J, Yang G, Chen J et al (2019) Flexible and high-loading lithium–sulfur batteries enabled by integrated three-in-one fibrous membranes[J]. Adv Energy Mater 9(38):1902001

    Article  CAS  Google Scholar 

  20. Liu Y, Haridas AK, Lee Y et al (2019) Freestanding porous sulfurized polyacrylonitrile fiber as a cathode material for advanced lithium sulfur batteries[J]. Appl Surf Sci 472:135–142

    Article  CAS  Google Scholar 

  21. Zhang YZ, Zhang Z, Liu S et al (2018) Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium-sulfur battery[J]. ACS Appl Mater Interfaces 10(10):8749–8757

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, Aboagye A, Kelkar A et al (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications[J]. J Mater Sci 49(2):463–480

    Article  Google Scholar 

  23. Li Y, Zhu J, Zhu P et al (2018) Glass fiber separator coated by porous carbon nanofiber derived from immiscible PAN/PMMA for high-performance lithium-sulfur batteries[J]. J Membr Sci 552:31–42

    Article  CAS  Google Scholar 

  24. Wang YH, Bayatpour S, Qian X et al (2020) Activated carbon fibers via reductive carbonization of cellulosic biomass for adsorption of nonpolar volatile organic compounds[J]. Colloids Surf A Physicochem Eng Asp 612:125908

    Article  Google Scholar 

  25. Zhao X, Kim M, Liu Y et al (2018) Root-like porous carbon nanofibers with high sulfur loading enabling superior areal capacity of lithium sulfur batteries[J]. Carbon 128:138–146

    Article  CAS  Google Scholar 

  26. Wang D, Cao Q, Jing B et al (2020) A freestanding metallic tin-modified and nitrogen-doped carbon skeleton as interlayer for lithium-sulfur battery[J]. Chem Eng J 399:125723

    Article  CAS  Google Scholar 

  27. Kim M, Lim J, Bak J et al (2019) Fe and N codoped mesoporous carbon nanofiber as a nonprecious metal catalyst for oxygen reduction reaction and a durable support for Pt nanoparticles[J]. ACS Sustain Chem Eng 7(20):17544–17552

    Article  CAS  Google Scholar 

  28. Zeng L, Jiang Y, Xu J et al (2015) Flexible copper-stabilized sulfur-carbon nanofibers with excellent electrochemical performance for Li-S batteries[J]. Nanoscale 7(25):10940–10949

    Article  CAS  PubMed  Google Scholar 

  29. Mentbayeva A, Belgibayeva A, Umirov N et al (2016) High performance freestanding composite cathode for lithium-sulfur batteries[J]. Electrochim Acta 217:242–248

    Article  CAS  Google Scholar 

  30. Wang Q, Fang L, Chen J et al (2015) Genome-wide mining, characterization, and development of microsatellite markers in gossypium species[J]. Sci Rep 5(1):1–10

    Google Scholar 

  31. Yang J, Wang S, Ma Z et al (2015) Novel nitrogen-doped hierarchically porous coralloid carbon materials as host matrixes for lithium–sulfur batteries[J]. Electrochim Acta 159:8–15

    Article  CAS  Google Scholar 

  32. Zeng JH, Wang YF, Gou SQ et al (2017) Sulfur in hyper-cross-linked porous polymer as cathode in Lithium-Sulfur batteries with enhanced electrochemical properties[J]. ACS Appl Mater Interfaces 9(40):34783–34792

    Article  CAS  PubMed  Google Scholar 

  33. Cheng Q, Xu W, Qin S et al (2019) Full dissolution of the whole lithium sulfide family (Li2S8 to Li2S) in a safe eutectic solvent for rechargeable Lithium-Sulfur batteries[J]. Angew Chem 131(17):5613–5617

    Article  Google Scholar 

  34. Zhang Y, Zhao Y, Bakenov Z et al (2013) Effect of graphene on sulfur/polyacrylonitrile nanocomposite cathode in high performance lithium/sulfur batteries[J]. J Electrochem Soc 160(8):A1194–A1198

    Article  CAS  Google Scholar 

  35. Zhang S (2014) Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery[J]. Energies 7(7):4588–4600

    Article  Google Scholar 

  36. Zhu J, Ge Y, Kim D et al (2016) A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries[J]. Nano Energy 20:176–184

    Article  CAS  Google Scholar 

  37. He MX, Li X, Li WH et al (2021) Immobilization and kinetic promotion of polysulfides by molybdenum carbide in lithium-sulfur batteries[J]. Chem Eng J 411:128563

    Article  CAS  Google Scholar 

  38. Waluś S, Barchasz C, Bouchet R et al (2020) Electrochemical impedance spectroscopy study of lithium–sulfur batteries: useful technique to reveal the Li/S electrochemical mechanism[J]. Electrochim Acta 359:136944

    Article  Google Scholar 

  39. Fang R, Zhao S, Pei S et al (2016) Toward more reliable lithium-sulfur batteries: an all-graphene cathode structure[J]. ACS Nano 10(9):8676–8682

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (grants nos. LY21F040008, LY21E020011), the Applied Basic Research Project of China National Textile and Apparel Council (grant no. J201801), and the Fundamental Research Funds of Zhejiang Sci-Tech University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingfan Du or Jie Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Z., Ma, X., Qiu, L. et al. Porous carbon nanofibers prepared by low-cost and environmentally friendly ammonium chloride for high-performance Li–S batteries. Ionics 28, 1157–1166 (2022). https://doi.org/10.1007/s11581-021-04350-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04350-0

Keywords

Navigation