Skip to main content

Advertisement

Log in

Research on performance of thermal management system integrated with multiple heat exchange methods

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A good thermal management system can effectively improve the performance of the lithium-ion battery and ensure the thermal safety of the lithium-ion battery. Therefore, based on the heat-generating characteristics of lithium-ion batteries obtained above, this paper established a composite thermal management system including heat pipes, thermally conductive silica gel, phase change materials, and microchannel liquid cooling plates. The velocity uniformity coefficient, friction resistance coefficient, and thermal characteristic parameters are used as evaluation indicators, and the thermal management system inlet flow is optimized to obtain the optimal inlet flow of the thermal management system. Based on this, the thermal management capability of the established thermal management system under different operating conditions of the lithium-ion battery is analyzed. It is advisable to select 0.67L/min as the inlet flow rate of the microchannel liquid-cooled plate of the composite thermal management system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kwon H, Park H (2019) Numerical simulation of prismatic lithium-ion battery life cycles under a wide range of temperature[J]. Int J Precis Eng Manuf Green Technol 6(1):63–73

    Article  Google Scholar 

  2. Prasad A, Parhizi M, Jain A (2019) Experimental and numerical investigation of heat transfer in Li-ion battery pack of a hoverboard[J]. Int J Energy Res

  3. Donal P, Finegan Bernhard T (2017) Tracking internal temperature and structural dynamics during nail penetration of lithium-ion cells[J]. J Electrochem Soc 164(13):3285–3291

    Article  Google Scholar 

  4. Tang Z, Min X, Song A et al (2019) Thermal management of a cylindrical lithium-ion battery module using a multichannel wavy tube[J]. J Energy Eng 145(1):04018072.1–04018072.9

  5. Xu X, Tong G, Li R (2020) Numerical study and optimizing on cold plate splitter for lithium battery thermal management system[J]. Appl Therm Eng 167(11):114787

  6. Zhou H, Zhou F, Wang Q, et al (2019) Thermal management of cylindrical lithium-ion battery based on a liquid cooling method with half-helical duct[J]. Appl Therm Eng 114257

  7. Jiang Z, Qu Z (2019) Lithium-ion battery thermal management using heat pipe and phase change material during the discharge-charge cycle: a comprehensive numerical study[J]. Appl Energy 242(PT.1-1284):378–392

    Article  Google Scholar 

  8. Chang C, Huang S, Chen W (2019) Thermal and solid electrolyte interphase characterization of lithium-ion battery[J]. Energy 174(May 1):999–1011

    Article  CAS  Google Scholar 

  9. Cao W, Zhao C, Wang Y et al (2019) Thermal modeling of full-size-scale cylindrical battery pack cooled by channeled liquid flow[J]. Int J Heat Mass Transf 138(AUG):1178–1187

    Article  Google Scholar 

  10. Martín M, Leire, Gastelurrutia J, et al (2019) Optimization of thermal management systems for vertical elevation applications powered by lithium-ion batteries[J]. Appl Therm Eng 147:155–166

  11. Huo Y, Rao Z, Liu X et al (2015) Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Convers Manag 89(jan):387–395

    Article  Google Scholar 

  12. Jarrett A, Kim I (2014) Influence of operating conditions on the optimum design of electric vehicle battery cooling plates[J]. J Power Sources 245(jan.1):644–655

    Article  CAS  Google Scholar 

  13. Ye X, Zhao Y, Quan Z (2018) Experimental study on heat dissipation for lithium-ion battery based on micro heat pipe array (MHPA). Appl Therm Eng 130:74–82

    Article  CAS  Google Scholar 

  14. Tran T, Harmand S, Sahut B (2014) Experimental investigation on heat pipe cooling for hybrid electric vehicle and electric vehicle lithium-ion battery. J Power Sources 265:262–272

    Article  CAS  Google Scholar 

  15. Javani N, Dincer I, Naterer G et al (2014) Modeling of passive thermal management for electrical vehicle battery packs with PCM between cells[J]. Appl Therm Eng 73(1):307–316

    Article  CAS  Google Scholar 

  16. Wilke S, Schweitzer B, Khateeb S et al (2017) Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: an experimental study[J]. J Power Sources 340:51–59

    Article  CAS  Google Scholar 

  17. Chengning Z, Xin J, Junqiu L (2017) PTC Self-heating experiments and thermal modeling of lithium-ion battery pack in electric vehicles[J]. Energies 10(4):572

    Article  Google Scholar 

  18. Lei Z, Zhang Y, Lei X (2018) Improving temperature uniformity of a lithium-ion battery by intermittent heating method in cold climate[J]. Int J Heat Mass Transf 121:275–281

    Article  CAS  Google Scholar 

  19. Wang Y, Wang H, Zhang Y et al (2021) Thermal oxidation characteristics for smoke particles 1 from an abused prismatic Li(Ni0.6Co0.2Mn0.2)O2 Battery 2[J]. The Journal of Energy Storage 39(1)

  20. Wang Y, Gao Q, Wang H (2020) Structural design and its thermal management performance for battery modules based on refrigerant cooling method[J]. Int J Energy Res 45(9)

  21. Zhang Y, Wang H , Wang Y et al (2020) Thermal abusive experimental research on the large-format lithium-ion battery using a buried dual-sensor[J]. Journal of Energy Storage 33

  22. Zhang T, Gao Q, Wang G et al (2017) Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process[J]. Appl Therm Eng 116(Complete):655–662

    Article  Google Scholar 

  23. Zhu J, Sun Z, Wei X et al (2016) An alternating current heating method for lithium-ion batteries from subzero temperatures[J]. Int J Energy Res 40(13):1869–1883

    Article  CAS  Google Scholar 

  24. Qu Z, Jiang Z, Wang Q (2019) Experimental study on pulse self-heating of lithium-ion battery at low temperature[J]. Int J Heat Mass Transf 135(JUN):696–705

    Article  CAS  Google Scholar 

  25. Panchal S, Dincer I, Agelin M, Fowler M et al (2016) Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery[J]. Int J Therm Sci 99:204-212

  26. Melcher A, Ziebert C, Rohde M et al (2016) Modeling and simulation the thermal runaway behavior of cylindrical Li-ion cells—computing of critical parameter [J]. Energies 9(4):292

    Article  Google Scholar 

  27. Fu J, Xu X, Li R (2019) Battery module thermal management based on liquid cold plate with heat transfer enhanced fin[J]. Int J Energy Res 43(8):4312–4321

    Article  Google Scholar 

  28. Babapoor A, Azizi M, Karimi G (2015) Thermal management of a Li-ion battery using carbon fiber-PCM composites[J]. Appl Therm Eng 82:281–290

    Article  CAS  Google Scholar 

  29. Bernardi D, Pawlikowski E, Newman J (1985) A general energy balance for battery systems[J]. J Electrochem Soc 132(1):5–12

    Article  CAS  Google Scholar 

Download references

Funding

The project is supported partly by the National Natural Science Foundation of China (51875259) and Foundation of State Key Laboratory of Automotive Simulation and Control (20180103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Hu or Xiaoming Xu.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yuan, Q., Hu, S. et al. Research on performance of thermal management system integrated with multiple heat exchange methods. Ionics 28, 789–799 (2022). https://doi.org/10.1007/s11581-021-04334-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04334-0

Keywords

Navigation