Skip to main content

Advertisement

Log in

Review of cobalt-based nanocomposites as electrode for supercapacitor application

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

With the increasing use of green energy resource, energy storage device has become one of the key issues in energy production. Supercapacitors have attracted great attention because of their advantages in energy storage. The electrode material is the core part of the supercapacitor and determines the performance of the supercapacitor. Cobalt-based nanomaterials (such as cobalt oxide, cobalt hydroxide, and cobaltous sulfide) have attracted extensive attention in recent years due to high theoretical capacity, low cost, and abundant natural resources. This review briefly introduces the recent report of cobalt-based materials in the field of supercapacitors and divides them into several groups according to their chemical composition. Some important problems related to the preparation, properties, and improvement of these materials have been discussed, and some synergistic effects have been observed. Finally, the research and development prospects of cobalt-based materials are prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Winter M, Brodd RJ (2005) What Are Batteries, Fuel Cells, and Supercapacitors?. Chem Rev 105:1021–1021

  2. Luo HM, Zhang FB, Zhao X, Zhang DY, Sun YX, Yang P (2013) Preparation and properties of coke powder activated carbon/α-Co(OH)2 composite electrode materials. J Mater Sci Mater Electron 24:2473–2478

  3. Conway BE (1991) Nanoporous Metals for Supercapacitor Applications. J Electrochem Soc. 138:1539–1548

  4. Simon P, Gogotsi Y, Dunn B (2014) Where Do Batteries End and Supercapacitors Begin? Science 343:1210–1211

  5. Zhang Y, Feng H, Wu X, Wang L, Zhang LL (2009) Progress of Electrochemical Capacitor Electrode Materials: A Review. Int J Hydrog Energy 34:4889–4899

  6. Sharma P, Bhatti TS (2010) A review on electrochemical double-layer capacitors. Energy Convers Manag 51:2901–2912

  7. Salunkhe RR, Young C, Tang J, Takei T, Ide Y, Kobayashi N et al (2016) A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem Commun 52:4764–4767

  8. Luo QP, Huang L, Gao X, Cheng Y, Yao B, Hu Z et al (2015) Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors. Nanotechnology 26:304004

  9. Hao P, Zhao Z, Tian J, Li H, Sang Y, Yu G et al (2014) Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6:12120–12129

  10. Chen D, Song MK, Cheng S, Huang L, Liu M (2014) Contribution of carbon fiber paper (CFP) to the capacitance of a CFP-supported manganese oxide supercapacitor.  J Power Sources 248:1197–1200

  11. Oliveira A, Oliveira H (2014) Carbon nanotube/ polypyrrole nanofibers core–shell composites decorated with titanium dioxide nanoparticles for supercapacitor electrodes. J Power Sources 268:45–49

  12. Xiao PW, Meng Q, Zhao L, Li JJ, Wei Z, Han BH (2017) Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption. Mater Des 129:164–172

  13. Li L, Zhou G, Weng Z (2014) Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon 67:500–507

  14. Zhang X, Zhang H, Lin Z, Yu M, Lu X, Tong Y (2016) Recent advances and challenges of stretchable supercapacitors based on carbon materials. Sci China Mater 59:475–494

  15. Saranya PE, Selladurai S (2018) Facile Synthesis of Self-Assembled Flower-Like Mesoporous Zinc Oxide Nanoflakes for Energy Applications. Int J Nanosci 16:176002

  16. Liu T, Jiang C, You W, Yu J (2017) Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance. J Mater Chem A 5:8635–8643

  17. Salunkhe RR, Bastakoti BP, Hsu CT, Suzuki N, Kim JH, Dou SX et al (2014) Direct Growth of Cobalt Hydroxide Rods on Nickel Foam and Its Application for Energy Storage. Chem Eur J 20:3084–3088

  18. Zeng Y, Yu M, Yue M, Fang P, Tong Y (2016) Iron-Based Supercapacitor Electrodes: Advances and Challenges. Adv Energy Mater 6:1601053

  19. Zan G, Wu T, Hu P, Zhou Y, Cui Y (2020) An approaching-theoretical-capacity anode material for aqueous battery: Hollow hexagonal prism Bi2O3 assembled by nanoparticles. Energy Stor Mater 28:82–90

  20. Hao C, Hu L, Min C, Yan Y, Wu L (2014) Nickel-Cobalt Layered Double Hydroxide Nanosheets for High‐performance Supercapacitor Electrode Materials. Adv Func Mater 24:934–942

  21. Yang S, Liu Y, Hao Y, Yang X, Cao B (2018) Oxygen‐Vacancy Abundant Ultrafine Co3O4/Graphene Composites for High‐Rate Supercapacitor Electrodes. Advanced Sci 5:1700659

  22. Deng J, Wang L, Lou Z, Zhang T (2014) Fast response/recovery performance of comb-like Co3O4 nanostructure. RSC Advances 4:21115

  23. Chao S, Su X, Feng X, Niu C, Wang J (2011) Synthesis of nearly monodisperse Co3O4 nanocubes via a microwave-assisted solvothermal process and their gas sensing properties. Sensors Actuators B Chem 157:681–685

  24. Hu T, Xin G, Sun H, Sun X, Yu M, Liu C et al (2013) Electrospray deposition of a Co3O4 nanoparticles–graphene composite for a binder-free lithium ion battery electrode. RSC Adv 4:1521–1525

  25. Dong J, Song L, Yin JJ, He W, Wu Y, Gu N et al (2014) Co3O4 Nanoparticles with Multi-Enzyme Activities and Their Application in Immunohistochemical Assay. ACS Appl Mater Interfaces 6:1959–1970

  26. Gb A, Hdi A, Jd A, Yl A, Fw A, Zz A et al (2013) Porous Co3O4 nanowires and nanorods: Highly active catalysts for the combustion of toluene - ScienceDirect. Appl Catal A 450:42–49

  27. Chen GL, Guyon C, Zhang ZX, Ognier S, Beem J, Tatoulian M (2013) The different structure characteristics of nanosized Co3O4 film crystallized by the annealing and plasma techniques. Mater Lett 107:111–114

  28. Gamaa B, Oaf C, Samd E (2013) Structural, optical and electrical properties of sol – gel prepared mesoporous Co3O4 /SiO2 nanocomposites. J Alloy Compd 579:606–611

  29. Razmjoo P, Sabour B, Dalvand S, Aghazadeh M, Ganjali MR (2014) Porous Co3O4 Nanoplates: Electrochemical Synthesis, Characterization and Investigation of Supercapacitive Performance. J Electrochem Soc 161:D293

  30. Ma M, Pan Z, Wang W, Guo L, Li J, Wu Z et al (2013) Microstructure and Gas-Sensing Property of the Ordered Mesoporous Co3O4. J Nanosci Nanotechnol 13:864–868

  31. Xu J, Ping G, Zhao TS (2012) Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells. Energy Environ Sci 5:5333–5339

  32. Bai B, Arandiyan H, Li J (2013) Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Appl Catal B 142–143:677–683

  33. Zheng R, Guo Y, Zhang Z, Liu C, Gao PX (2013) Nonprecious catalytic honeycombs structured with three dimensional hierarchical Co3O4 nano-arrays for high performance nitric oxide oxidation. J Mater Chem A 1:9897–9906

  34. Xu H, Gao L, Qiang Z, Li J, Diwu J, Chou X et al (2014) Preparation Method of Co3O4 Nanoparticles Using Degreasing Cotton and Their Electrochemical Performances in Supercapacitors. J Nanomater 2014:1–9

  35. Wang Y, Tong Z, Jiang K, Da P, Zheng P, Jing T et al (2015) Reduced Mesoporous Co3O4 Nanowires as Efficient Water Oxidation Electrocatalysts and Supercapacitor Electrodes. Adv Energy Mater 4:1–7

  36. Venkatachalam V, Alsalme A, Alswieleh A, Jayavel R (2018) Shape controlled synthesis of rod-like Co3O4 nanostructures as high-performance electrodesfor supercapacitor applications. J Mater Sci: Mater Electron 29:6059–6067

  37. Zhang YQ, Li L, Shi SJ, Xiong QQ, Zhao XY, Wang XL et al (2014) Synthesis of porous Co3O4 nanoflake array and its temperature behavior as pseudo-capacitor electrode. J Power Sources 256:200–205

  38. Wang X, Yao S, Wu X, Shi Z, Que R (2015) Synthesis of porous Co3O4 nanoflake array and its temperature behavior as pseudo-capacitor electrode. RSC Adv 5:17938–17944

  39. Gou W, Zhou X, Li J, Ma Y (2016) Nanoporous Co3O4 plates as highly electroactive materials for electrochemical energy storage. Mater Lett 180:207–211

  40. Shim HW, Lim AH, Kim JC, Jang E, Kim DW (2013) Scalable One-pot Bacteria-templating Synthesis Route toward Hierarchical, Porous-Co3O4 Superstructures for Supercapacitor Electrodes. Sci Rep 3:2325

  41. Abushrenta N, Wu X, Wang J, Liu J, Sun X (2015) Hierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors. Sci Rep 5:13082

  42. Mondal C, Ganguly M, Manna PK, Yusuf SM, Pal T (2013) Fabrication of porous beta-Co(OH)2 architecture at room temperature: a high performance supercapacitor. Langmuir 29:9179–9187

  43. Huang J, Zhu J, Cheng K, Yang X, Cao D, Wang G (2012) Preparation of Co3O4 nanowires grown on nickel foam with superior electrochemical capacitance. Electrochim Acta 75:273–278

  44. Hu X, Wei L, Chen R, Wu Q, Li J (2020) Reviews and Prospectives of Co3O4 ‐Based Nanomaterials for Supercapacitor Application. ChemistrySelect 5:5268–5288

  45. Yang J, Wei F, Sui Y, Qi J, He Y, Meng Q et al (2016) Co3O4 nanocrystals derived from a zeolitic imidazolate framework on Ni foam as high-performance supercapacitor electrode material. RSC Adv 6:61803–61808

  46. Yao M, Hu Z, Xu Z, Liu Y (2015) Template synthesis of 1D hierarchical hollow Co3O4 nanotubes as high performance supercapacitor materials. J Alloy Compd 644:721–728

  47. Chao F, Zhang J, Deng Y, Cheng Z, Lei L, Hu W (2015) One-pot fabrication of Co3O4 microspheres via hydrothermal method at low temperature for high capacity supercapacitor. Mater Sci Eng B 199:15–21

  48. Li ZY, Phuong Bui, TM,Kwak, et al (2016) Enhanced electrochemical activity of low temperature solution process synthesized Co3O4 nanoparticles for pseudo-supercapacitors applications. Ceram Int 42:1879–1885

  49. Liu XY, Gao YQ, Yang GW (2016) A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes. Nanoscale 8:4227–4235

  50. Mohammad Q, Naimeh N, Alireza Z et al (2015) Hierarchical Co3O4/Co(OH)2 Nanoflakes as a Supercapacitor Electrode: Experimental and Semi-Empirical Model. ACS Appl Mater Interfaces 7:11172–11179

  51. Meng T, Qian X, Zhi W et al (2015) Co3O4 Nanorods with Self-assembled Nanoparticles in Queue for Supercapacitor. Electrochimica Acta 180:104–111

  52. Sun J, Wang Y, Zhang Y, Xu C, Chen H (2019) Egg Albumin-Assisted Hydrothermal Synthesis of Co3O4 Quasi-Cubes as Superior Electrode Material for Supercapacitors with Excellent Performances. Nanoscale Res Lett 14:340–350

  53. Cao F, Pan GX, Tang PS, Chen HF (2012) Hydrothermal-synthesized Co(OH)2 nanocone arrays for supercapacitor application. J Power Sources 216:395–399

  54. Zhou X, Shen X, Xia Z, Zhang Z, Qu Y (2015) Hollow Fluffy Co3O4 Cages as Efficient Electroactive Materials for Supercapacitors and Oxygen Evolution Reaction. ACS Appl Mater Interfaces 7:20322–20331

  55. Gao L, Xu S, Xue C, Hai Z, Sun D, Lu Y (2016) Self-assembly of hierarchical 3D starfish-like Co3O4 nanowire bundles on nickel foam for high-performance supercapacitor. J Nanopart Res 18:112–121

  56. Wang X, Wu X, Xu B et al (2016) Coralloid and hierarchical Co3O4 nanostructures used as supercapacitors with good cycling stability. J Solid State Electrochem 20(1303):1309

  57. Liu Y, Wu J, Hackenberg KP, Jing Z, Wang YM, Yang Y et al (2017) Self-optimizing, highly surface-active layeredmetal dichalcogenide catalysts for hydrogen evolution. Nat Energy 6:17127–17133

  58. Liu Y, Wang YM, Yakobson BI, Wood BC (2014) Assessing Carbon-Based Anodes for Lithium-Ion Batteries: A Universal Description of Charge-Transfer Binding. Phys Rev Lett 113:028304–028309

  59. Abdolmaleki A, Kazerooni H, Gholivand MB, Heydari H, Pendashteh A (2015) Facile electrostatic coprecipitation of f-SWCNT/Co3O4 nanocomposite as supercapacitor material. Ionics 21:515–523

  60. Tnjie A, Ra A, Mgs B, Lyr A (2016) Supercapacitor performance of carbon supported Co3O4 nanoparticles synthesized using Terminalia chebula fruit - ScienceDirect. J Taiwan Inst Chem Eng 68:489–495

  61. Wei L, Fan H, Shen W, Qu S (2016) Facile and Sustainable Synthesis of Co3O4@Hollow‐Carbon‐Fiber for a Binder‐Free Supercapacitor Electrode. ChemistrySelec 1:6469–6475

  62. Ezhil V, Bose D, Muruganantham R, Seung-Kyu H, Jin CS, Suk HY et al (2018) Hexagonal Co3O4 anchored reduced graphene oxide sheets for high-performance supercapacitors and non-enzymatic glucose sensing. J Mater Chem A 6:14367–14379

  63. Sun L, Yan M, Xiao L, Yu L, Bai H, Xie L et al (2018) Synthesis of C/Co3O4 composite mesoporous hollow sphere sandwich graphene films for high-performance supercapacitors. Inorganic Chemistry. Frontiers 5:2554–2562

  64. Ding K, Ping Y, Hou P, Song X, Xin C (2017)Ultrathin and Highly Crystalline Co3O4 Nanosheets In Situ Grown on Graphene toward Enhanced Supercapacitor Performance. Advanced Materials. Interfaces 4:1600884

  65. Gopalakrishnan M, Srikesh G, Mohan A, Arivazhagan V (2017) In-situ synthesis of Co3O4/graphite nanocomposite for high-performance supercapacitor electrode applications. Appl Surf Sci 403:578–583

  66. Du F, Zuo X, Yang Q, Li G, Ding Z, Wu M et al (2016) Facile hydrothermal reduction synthesis of porous Co3O4 nanosheets@RGO nanocomposite and applied as a supercapacitor electrode with enhanced specific capacitance and excellent cyclestability. Electrochim Acta 222:976–982

  67. Mondal C, Ghosh D, Ganguly M, Sasmal AK, Roy A, Pal T (2015) Synthesis of multiwall carbon nanotube wrapped Co(OH)2 flakes: A high-performance supercapacitor. Appl Surf Sci 359:500–507

  68. Li T, Li S, Zhang B et al (2015) Supercapacitor electrode with a homogeneously Co3O4-coated multiwalled carbon nanotube for a high capacitance. Nanoscale Res Lett 10:208–224

  69. Ke Q, Tang C, Yang ZC, Zheng M, Mao L, Liu H et al (2015) 3D Nanostructure of Carbon Nanotubes Decorated Co3O4 Nanowire Arrays for High Performance Supercapacitor Electrode. Electrochim Acta 163:9–15

  70. Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv Mater 22:347–351

  71. Wang C, Hu C (2005) Electrochemical and textural characterization of binary Ru–Sn oxides synthesized under mild hydrothermal conditions for supercapacitors. Electrochim Acta 50:2573–2581

  72. Hu L, Wu L, Liao M, Hu X, Fang X (2012) Electrical Transport Properties of Large, Individual NiCo2O4 Nanoplates. Adv Func Mater 22:998–1004

  73. Zan G, Wang J, Li Z, Yang W, Liu L (2011) Graphene Nanosheet/Ni2+/Al3+ Layered Double-Hydroxide Composite as a Novel Electrode for a Supercapacitor. Chem Mater 23:3509–3516

  74. Su D, Tang Z, Xie J, Bian Z, Zhang J, Yang D et al (2019) Co, Mn-LDH nanoneedle arrays grown on Ni foam for high performance supercapacitors. Appl Surf Sci 469:487–494

  75. Wu N, Low J, Liu T, Yu J, Cao S (2017) Hierarchical hollow cages of Mn-Co layered double hydroxide as supercapacitor electrode materials. Appl Surf Sci 413:35–40

  76. Qiao Y, Peng J, Zhang X, Ning C, Gao W (2017) One-pot synthesized mesoporous Ni–Co hydroxide for high performance supercapacitors. Ionics 23:1–10

  77. Zan G, Wu T, Zhu F, He P, Cheng Y, Chai S et al (2021)  A biomimetic conductive super-foldable material. Matter. 2021. 4, 3232–3247.

  78. Zan G, Wu Q (2016) Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv Mater 28:2099–2147

  79. Cavaliere S, Subianto S, Savych I, Jones DJ, Roziere J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4:4761–4785

  80. Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z et al (2011) In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 3:3357–3363

  81. Feng S, Xu R (2001) New Materials in Hydrothermal Synthesis. Acc Chem Res 34:239–247

  82. Hu J, Qian F, Song G, Wang L (2016) Hierarchical Heterostructures of NiCo2O4 @XMoO4 (X=Ni, Co) as an Electrode Material or High-Performance Supercapacitors. Nanoscale Res Lett 11:257–263

  83. Chen WQ, Jiao W, Ma KY, Li M, Cheng JP (2018) Hierarchical NiCo2O4 @Co-Fe LDH core-shell nanowire arrays for high-performance supercapacitor. Appl Surf Sci 451:280–288

  84. Deng S, Xiao X, Chen G, Wang L, Wang Y (2016) Cd doped porous Co3O4 nanosheets as electrode material for high performance supercapacitor application. Electrochim Acta 196:316–327

  85. Kundu M, Singh G, Svensson AM (2019) Co(OH)2@MnO2 nanosheet arrays as hybrid binder-free electrodes for high-performance lithium-ion batteries and supercapacitors. New J Chem 43:1257–1266

  86. Ali G, Fouad OA, Makhlouf SA, Yusoff MM, Chong KF (2014) Co3O4/SiO2 nanocomposites for supercapacitor application. J Solid State Electrochem 18:2505–2512

  87. Xie L, Hu Z, Lv C, Sun G, Wang J, Li Y et al (2012) CoxNi1x double hydroxide nanoparticles with ultrahigh specific capacitances as supercapacitor electrode materials. Electrochim Acta 78:205–211

  88. Karthikeyan K, Amaresh S, Kalpana D, Selvan RK, Lee YS (2012) Electrochemical supercapacitor studies of hierarchical structured Co2+-substituted SnO2nanoparticles by a hydrothermal method. J Phys Chem Solids 73:363–367

  89. Chen X, Yuzhi H, Hui L, Bae S, Ang L, Wang Z et al (2018) Electrodeposited nickel aluminum-layered double hydroxide on Co3O4 as binder-free electrode for supercapacitor. J Mater Sci Mater Electron 30:2419–2430

  90. Rakhi RB, Chen W, Hedhili MN, Cha D, Alshareef HN (2014) Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes byhydrous RuO2 nanoparticle decoration. Acs Appl Mater Interfaces 6:4196–4206

  91. Ramadoss A, Kim SJ (2014) Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array electrodes. Electrochim Acta 136:105–111

  92. Jiang X, Cheng W, Hu H, Hu Y, Li H (2018) Facile preparation of a novel composite Co-Ni(OH)2/ carbon sphere for high-performance super capacitors. Mater Technol 34:1–9

  93. Ali F, Khalid NR (2020) Facile synthesis and properties of chromium-doped cobalt oxide (Cr-doped Co3O4) nanostructures for supercapacitor applications. Appl Nanosci 10:1481–1488

  94. Lu Z, Qiu Y, Wei Z, Zheng C, Liu J, Sun X et al (2012) Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Res 5:369–378

  95. Gomez J, Kalu EE (2013) High-performance binder-free Co–Mn composite oxide supercapacitor electrode. J Power Sources 230:218–224

  96. Xu J, Dong Y, Cao J, Bing G, Chen Z (2013) Microwave-incorporated hydrothermal synthesis of urchin-like Ni(OH)2–Co(OH)2 hollow microspheres and their supercapacitor applications. Electrochim Acta 114:76–82

  97. Sun X, Wang G, Sun H, Lu F, Yu M, Lian J (2013) Morphology controlled high performance supercapacitor behaviour of the Ni–Co binary hydroxide system. J Power Sources 238:150–156

  98. Tian Q, Wang X, Huang G, Guo X (2017) Nanostructured (Co, Mn)3O4 for High Capacitive Supercapacitor Applications. Nanoscale Res Lett 12:214–210

  99. Gao Y, Zhang W, Yang X, Ma Y, Shao J, Li Y (2016) Ni-Co nanosheets supported on conductive "core" for integrated supercapacitor with high performance. Electrochim Acta 201:260–267

  100. Hussain I, Lee JM, Iqbal S, Kim HS, Jang SW, Jung JY et al (2020) Preserved crystal phase and morphology: Electrochemical influence of copper and iron co-doped cobalt oxide and its supercapacitor applications.  Electrochimica Acta 340:135953

  101. Yu D, Wang Y, Zhang L, Low ZX, Zhang X, Chen F et al (2014) Three-dimensional branched single-crystal β-Co(OH)2 nanowire array and its application for supercapacitor with excellent electrochemical property. Nano Energy 10:153–162

  102. Zhang X, Xiao J, Zhang X, Meng Y, Xiao D (2016) Three-Dimensional Co3O4 Nanowires@Amorphous Ni(OH)2 Ultrathin Nanosheets Hierarchical Structure for Electrochemical Energy Storage . Electrochim Acta 191:758–766

  103. Wang K, Shi Z, Wang Y, Ye Z, Xia H, Liu G et al (2015)  Co3O4 nanowires@MnO2 nanolayer or nanoflakes core–shell arrays for high-performance supercapacitors: The influence of morphology on performance. J Alloy Compd 624:85–93

  104. Zuo Y, Ni JJ, Song JM, Niu HL, Mao CJ, Zhang SY et al (2016) Synthesis of Co3O4/NiO nanofilms and their enhanced electrochemical performance for supercapacitor application. Appl Surf Sci 370:528–535

  105. Wei C, Liu K, Tao J, Kang X, Hou H, Cheng C et al (2018) Self-Template Synthesis of Hybrid Porous Co3O4–CeO2 Hollow Polyhedrons for High-Performance Supercapacitors. Chem Asian J 13:111–117

  106. Pang M, Long G, Jiang S, Ji Y, Han W, Wang B et al (2015) Ethanol-assisted solvothermal synthesis of porous nanostructured cobalt oxides (CoO/Co3O4) for high-performance supercapacitors. Chem Eng J 280:377–384

  107. Lv J, Guo W, Liang T (2016) Synthesis of Co3O4@CoMoO4 core–shell architectures nanocomposites as high-performance supercapacitor electrode. J Electroanal Chem 783:250–257

  108. Xu K, Yang X, Yang J et al (2017) Synthesis of hierarchical Co3O4@NiCo2O4 core-shell nanosheets as electrode materials for supercapacitor application. J Alloy Compd 700:247–251

  109. Dong T, Li M, Wang P, Yang P (2018) Synthesis of hierarchical tube-like yolk-shell Co3O4@NiMoO4 for enhanced supercapacitor performance. Int J Hydrogen Energy 43:14569–71457

  110. Ren B, Yu L, Song D, Liu Q, Liu J, Wang J et al (2015) Facile synthesis of Co3O4 nanowires grown on hollow NiO microspheres with superior electrochemical performance. Electrochim Acta 166:168–173

  111. Jie Y, Ma Z, Gao W, Wei M (2017) Layered Structural Co‐Based MOF with Conductive Network Frames as a New Supercapacitor Electrode. Chem Eur J 23:631–636

  112. Zhu G, Wen H, Min M, Wang W, Yang L, Wang L et al (2018) A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh arealcapacitance and excellent rate performance. Chem Commun 54:10499–10502

  113. Zhu Z, Cheng H, Li TT, Yue H, Qian J, Huang S (2018) MOF derived Ni-Co-S nanosheets on electrochemically activated carbon cloth via an etching/ion exchange method for wearable hybrid supercapacitors - ScienceDirect. CrystEngComm 20:3812–3816

  114. Wei Z, Yza B, Liang CA, Dj B, Di WA, Rz A et al (2019) Facile synthesis of exfoliated Co–Al LDH–carbon nanotube composites with high performance as supercapacitor electrodes. Chem Eng J 371:461–469

  115. Yu L, Shi N, Liu Q, Wang J, Yang B, Wang B et al (2014) Facile synthesis of exfoliated Co–Al LDH–carbon nanotube composites with high performance as supercapacitor electrodes. Phys Chem Chem Phys 16:17936–17942

  116. Haiquan, Huang, Dong, Xiaochen, Chencheng, Zhang et al (2015) N-doped carbon coated hollow NixCo9-xS8 urchins for a high performance supercapacitor. Nanoscale 7: 3155–3163

  117. Wang X, Jia L, Liu Q, Liu J, Guo X, Jing X et al (2016) Synthesis of 3D Flower-like Co3O4/Polypyrrole nanosheet networks Electrode for high performance supercapacitors. Colloids Surf, A 506:646–653

  118. Sun S, Huang M, Wang P, Lu M (2019) Controllable Hydrothermal Synthesis of Ni/Co MOF as Hybrid Advanced Electrode Materials for Supercapacitor. J Electrochem Soc 166:A1799–A1805

  119. Zhang Y, Chen H, Guan C, Wu Y, Yang C, Shen Z et al (2018) Energy-Saving Synthesis of MOF-Derived Hierarchical and Hollow Co(VO3)2-Co(OH)2 Composite Leaf Arrays for Supercapacitor Electrode Materials. ACS Appl Mater Interfaces 10:18440–18444

  120. Deng T, Yue L, Wei Z, Sui M, Zheng W (2017) Inverted Design for High-Performance Supercapacitor Via Co(OH)2 -Derived Highly Oriented MOF Electrodes. Adv Energy Mater 8:1702294

  121. Li J, Wang X, Song S, Zhao Sn, Wang F, Pan J et al (2017) Self-supported Co3O4 wire-penetrated-cage hybrid arrays with enhanced supercapacitance properties. CrystEngComm 19:1459–1463

  122. Xu W, Li TT, Zheng YQ (2016) Porous Co3O4 nanoparticles derived from Co(II)- cyclohexanehexacarboxylate metal-organic framework used as supercapacitor with good cycling stability. RSC Adv 6:86447–86454

  123. Xiang C, Liu Y, Yin Y, Huang P, Zou Y, Fehse M et al (2019) Facile Green Route to Ni/Co Oxide Nanoparticle Embedded 3D Graphitic Carbon Nanosheets for High Performance Hybrid Supercapacitor Devices. ACS Appl Energy Mater 2:3389–3399

  124. Shao X, Zheng X, Zou W, Luo Y, Cen Q, Ye Q et al (2017) Alkali conversion of Ni-Co nanoarrays on carbon cloth for a high-capacity supercapacitor electrode. Electrochim Acta 248:322–332

  125. Gebremariam TT, Chen F, Wang Q, Wang J, Liu Y, Wang X et al (2018) Bimetallic Mn-Co Oxide Nanoparticles Anchored on Carbon Nanofibers Wrapped in Nitrogen-Doped Carbon for Application in Zn–Air Batteries and Supercapacitors. Acs Appl Energy Mater 1:1612–1625

  126. Li D, Li Y, Xu Z, Wang D, Wang T, Zhao J et al (2017) Core/shell Ni–P@Ni–Co composite with micro-/nanostructure for supercapacitor. J Mater Sci 53:3647–3660

  127. Hong W, Wang J, Li Z, Yang S (2015) Fabrication of Co3O4@Co-Ni sulfides core/shell nanowire arrays as binder-free electrode for electrochemical energy storage. Energy 93:435–441

  128. Shu H, Zhu GN, Chao Z, Weng WT, Liu T (2012) Immobilization of Co-Al Layered Double Hydroxides on Graphene Oxide Nanosheets: Growth Mechanism and Supercapacitor Studies. ACS Appl Mater Interfaces 4:2242–2249

  129. Sun X, Li C, Bai J (2018) Mixed-valent CoxO–Ag/carbon nanofibers as binder-free and conductive-free electrode materials for high supercapacitor. J Mater Sci: Mater Electron 29:19382–19392

  130. Tong M, Liu S, Xian Z, Wu T, Zhao H (2017) Two-dimensional CoNi nanoparticles@S,N-doped carbon composites derived from S, N-containing Co/Ni MOFs for high performance supercapacitors. J Mater Chem A 5:9873–9881

  131. Chen HQ, Xiang J, Zhao RD, Guo Y, Loy S, Wu FF et al (2021) ZnS/NiCo2S4 arrays on nickel foam as an energy storage for supercapacitor. Ionics 27:867–874

  132. Chenqi Y, Zou J, Yang H, Leng X (2018) A facile hydrothermal synthesis of graphene/RuO2/Co3O4 nanocomposites with high pseudocapacity. New J Chem 42:7066–7072

  133. Gu Z, Zheng X, Zhang] X (2016) Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chem Eng J 304:223–231

  134. Xu ZA, Jj A, Ye CA, Kca B, Fan YC, Jy A et al (2018) A flexible and high voltage symmetric supercapacitor based on hybrid configuration of cobalt hexacyanoferrate/reduced graphene oxide hydrogels. Chem Eng J 335:321–329

  135. Liao Q, Na L, Jin S, Yang G, Wang C (2015) All-Solid-State Symmetric Supercapacitor Based on Co3O4 Nanoparticles on Vertically Aligned Graphene. ACS Nano 9:5310–5317

  136. Yang M, Cheng H, Gu Y, Sun Z, Hu J, Cao L et al (2015) Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors. Nano Res 8:2744–2754

  137. Li T, Li R, Luo H (2016) Facile in situ growth of Ni/Co-LDH arrays by hypothermal chemical coprecipitation for all-solid-state asymmetric supercapacitors. J Mater Chem A 4:18922–18930

  138. Gong J, Tian Y, Yang Z, Wang QJ, Hong X, Ding Q (2018) High-Performance Flexible All-Solid-State Asymmetric Supercapacitors Based on Vertically Aligned CuSe@Co(OH)2 Nanosheet Arrays. J Phys Chem C 122:2002–2011

  139. Li B, Hong H, Song Z et al (2020) Photocatalysis‐Assisted Co3O4/g‐C3N4 p–n Junction All‐Solid‐State Supercapacitors: A Bridge between Energy Storage and Photocatalysis. Adv Sci 7:2001939

  140. Su L, Zhang X, Yuan C, Gao B (2008) Symmetric Self-Hybrid Supercapacitor Consisting of Multiwall Carbon Nanotubes and Co-Al Layered Double Hydroxides. J Electrochem Soc 155:A110–A114

  141. Balasubramanian S, Kamaraj PK (2015) Symmetric Self-Hybrid Supercapacitor Consisting of Multiwall Carbon Nanotubes and Co-Al Layered Double Hydroxides. Electrochim Acta 168:50–58

  142. Wang H, Gao Q, Hu J (2010) Asymmetric capacitor based on superior porous Ni-Zn-Co oxide/hydroxide and carbon electrodesJ Power Sources 195:3017–3024

  143. Xing L, Dong Y, Hu F, Wu X, Umar A (2018) Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors. Dalton Trans 47:5687–5694

  144. Liu W, Li X, Zhu M, He X (2015) High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J Power Sources 282:179–186

  145. Gu Y, Fan L-Q, Huang J-L et al (2018) Hydrothermal Synthesis of Co-Doped NiSe2 Nanowire for High-Performance Asymmetric Supercapacitors. Materials 11:1468–1482

  146. Chao G, Huang M, Pei Z, Sun Z, Wu J (2016) Mesoporous Co0.85Se nanosheets supported on Ni foam as a positive electrode material for asymmetric supercapacitor. Appl Surf Sci 362:469–476

  147. Ghosh D, Mandal M, Das CK (2015) Solid State Flexible Asymmetric Supercapacitor Based on Carbon Fiber Supported Hierarchical Co(OH)xCO3 and Ni(OH)2. Langmuir 31:7835–7843

  148. Liu Y, Cao X, Cui L, Zhong Y, Zheng R, Wei D, et al (2019) Zn-Ni-Co trimetallic carbonate hydroxide nanothorns branched on Cu(OH)2 nanorods array based on Cu foam for high-performance asymmetric supercapacitors. J Power Sources 437: 226897.1-.9

  149. Moradlou O, Ansarinejad H, Hosseinzadeh M, Kazemi H (2018) High-performance solid state asymmetric supercapacitor based on electrochemically decorated 3D network-like Co3O4 architecture on NiO nanoworms. J Alloy Compd 755:231–241

  150. Wei C, Cheng C, Zhou B, Yuan X, Cui T, Wang S et al (2015) Hierarchically Porous NaCoPO4–Co3O4 Hollow Microspheres for Flexible Asymmetric Solid‐State Supercapacitors. Part Part Syst Charact 32:831–839

  151. Wu X, Meng L, Wang Q, Zhang W, Wang Y (2017) A flexible asymmetric fibered-supercapacitor based on unique Co3O4@PPy core-shell nanorod arrays electrode. Chem Eng J 327:193–201

  152. Liao Q, Wang C (2019) Amorphous FeOOH nanorods and Co3O4 nanoflakes as binder-free electrodes for high-performance all-solid-state asymmetric supercapacitors. CrystEngComm 21:662–672

  153. Lin J, Wu J, Xu R, Lai M, Gong C, Chen X et al (2016) Excellent Electrochemical Performance Hierarchical Co3O4@Ni3S2 core/shell nanowire arrays for Asymmetric Supercapacitors. Electrochim Acta 207:87–96

  154. Bo L, Kong D, Zhang J, Ye W, Chen T, Cheng C et al (2016) 3D hierarchical Co3O4@Co3S4 nanoarrays as cathode materials for asymmetric pseudocapacitors. J Mater Chem A 4:3287–3296

  155. Yin Y, Yong X, Yu Z, Yan Y, Ke Z, Yang J et al (2018) Millimeter‐Long Vertically Aligned Carbon‐Nanotube‐ Supported Co3O4 Composite Electrode for High‐Performance Asymmetric Supercapacitor. ChemElectroChem 5:1394–1400

  156. Li X, Fang S, Long X et al (2015) Self-Assembled 3D Graphene-Based Aerogel with Co3O4 Nanoparticles as High-Performance Asymmetric Supercapacitor Electrode. Chemsuschem 8:2917–2926

  157. Ujjain S, Singh G, Sharma RK (2015) Co3O4@Reduced Graphene Oxide Nanoribbon for high performance Asymmetric Supercapacitor. Electrochim Acta 169:276–282

Download references

Funding

The authors received financial support from the Science and Technology Project of Lishui City (2021GYX12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangfeng Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Wang, Y., Wu, Q. et al. Review of cobalt-based nanocomposites as electrode for supercapacitor application. Ionics 28, 989–1015 (2022). https://doi.org/10.1007/s11581-021-04319-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04319-z

Keywords

Navigation