Skip to main content
Log in

Effects of annealing temperature of PtCu/MWCNT catalysts on their electrocatalytic performance of electrooxidation of methanol

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

PtCu alloy supported on acid-treated multi-walled carbon nanotube (PtCu/MWCNT) catalysts were prepared through polyol reduction method. The prepared PtCu/MWCNT composites were annealed at different temperatures to study the effects of annealing temperatures on the particle size, structure, surface morphology, and the activity and stability of methanol oxidation reaction (MOR). X-ray diffraction (XRD), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) were used to study the structure and physical characteristics of the catalyst. These physical characterization analyses all confirmed the formation of PtCu alloy, and the particle size of the catalysts rose with the increase of annealing temperature. The activity and stability of catalysts were further measured by cyclic voltammetry (CV) and accelerated durability tests (ADTs), respectively. It was found after annealing at 400℃ that the PtCu/MWCNT catalyst has higher activity and longer durability toward MOR. This work demonstrated that PtCu catalysts after annealing in a H2 atmosphere will cause a change in the surface atomic configuration and degree of alloying of PtCu catalysts, which determines the activity and long-term durability of PtCu/MWCNT catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li S, Tian Z, Liu Y, Jang Z, Syed W-h, Chen X, Panagiotis T, Shen P (2021) Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions. Chin J Catal 42:648–657

    CAS  Google Scholar 

  2. Wu B, Zhu J, Li X, Wang X, Chu J, Xiong S (2018) PtRu nanoparticles supported on p-phenylenediamine-functionalized multiwalled carbon nanotubes: enhanced activity and stability for methanol oxidation. Ionics 25:181–189

    Google Scholar 

  3. Guo Y, Tang L, Zhang Y, Wei H, Shu X, Cui J, Wang Y, Liu J, Li Q, Sun X, Wu Y (2020) Construction of three-dimensional hierarchical Pt/TiO2@C nanowires with enhanced methanol oxidation properties. Int J Hydrog Energy 45:33440–33447

    CAS  Google Scholar 

  4. Pongpichayakul N, Themsirimongkon S, Maturost S, Kanlayawat W, Fang L, Burapat I, Paralee W, Surin S (2020) Cerium oxide-modified surfaces of several carbons as supports for a platinum-based anode electrode for methanol electro-oxidation. Int J Hydrog Energy 46:2905–2916

    Google Scholar 

  5. Liu C, Zhang L, Sun L, Wang W, Chen Z (2020) Enhanced electrocatalytic activity of PtCu bimetallic nanoparticles on CeO2/carbon nanotubes for methanol electro-oxidation. Int J Hydrogen Energy 45:8558–8567

    CAS  Google Scholar 

  6. Sayed ET, Abdelkareem MA, Alawadhi H, Salameh T, Olabi A, Alami A-h (2020) Facile and low-cost synthesis route for graphene deposition over cobalt dendrites for direct methanol fuel cell applications. J Taiwan Inst Chem Eng 115:321–330

    CAS  Google Scholar 

  7. Huang M, Zhang J, Wu C, Guan L (2017) Pt nanoparticles densely coated on SnO2-covered multiwalled carbon nanotubes with excellent electrocatalytic activity and stability for methanol oxidation. ACS Appl Mater Interfaces 9:26921–26927

    CAS  PubMed  Google Scholar 

  8. Kakati N, Maiti J, Lee SH, Jee S, Viswanathan B, Yoon Y (2014) Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt-Ru? Chem Rev 114:12397–12429

    CAS  PubMed  Google Scholar 

  9. Long G-F, Li X-H, Wan K, Liang Z-x, Piao J-h, Tsiakaras P (2017) Pt/CN-doped electrocatalysts: Superior electrocatalytic activity for methanol oxidation reaction and mechanistic insight into interfacial enhancement. Appl Catal B 203:541–548

    CAS  Google Scholar 

  10. Wu B, Kuang Y, Zhang X, Chen J (2011) Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications. Nano Today 6:75–90

    CAS  Google Scholar 

  11. Wang YJ, Zhao N, Fang B, Li H, Bi XT, Wang H (2015) Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev 115:3433–67

    CAS  PubMed  Google Scholar 

  12. Guo S, Zhang S, Sun S (2013) Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew Chem Int Ed Engl 52:8526–8544

    CAS  PubMed  Google Scholar 

  13. Song H, Qiu X, Li F (2008) Effect of heat treatment on the performance of TiO2-Pt/CNT catalysts for methanol electro-oxidation. Electrochim Acta 53:3708–3713

    CAS  Google Scholar 

  14. Jiang F, Yao Z, Yue R, Du Y, Xu J, Yang P, Wang C (2012) Electrochemical fabrication of long-term stable Pt-loaded PEDOT/graphene composites for ethanol electrooxidation. Int J Hydrog Energy 37:14085–14093

    CAS  Google Scholar 

  15. Maiyalagan T (2009) Silicotungstic acid stabilized Pt–Ru nanoparticles supported on carbon nanofibers electrodes for methanol oxidation. Int J Hydrog Energy 34:2874–2879

    CAS  Google Scholar 

  16. Chu Y-Y, Wang Z-Z, Jiang Z-Z, Gu D-M, Yin G-P (2011) A novel structural design of a Pt/C-CeO2 catalyst with improved performance for methanol electro-oxidation by beta-cyclodextrin carbonization. Adv Mater 23:3100–3104

    CAS  PubMed  Google Scholar 

  17. Wu B, Wang C, Cui Y, Mao L, Xiong X (2015) Tailoring carbon nanotubes surface with maleic anhydride for highly dispersed PtRu nanoparticles and their electrocatalytic oxidation of methanol. RSC Adv 5:16986–16992

    CAS  Google Scholar 

  18. El-Deeb H, Bron M (2015) Microwave-assisted polyol synthesis of PtCu/carbon nanotube catalysts for electrocatalytic oxygen reduction. J Power Sources 275:893–900

    CAS  Google Scholar 

  19. Macias-Ferrer D, Melo-Bangda JA, Silva-Rodrigo R, Lam-Maldonado M, Páramo-García U, Verde-Gómez Y, Del-Ángel-Vicente P (2020) Highly dispersed PtCo nanoparticles on micro/nano-structured pyrolytic carbon from refined sugar for methanol electro-oxidation in acid media. Catal Today 349:159–167

    CAS  Google Scholar 

  20. Zhang J-M, Wang R-X, Nong R-J, Li Y, Zhang X-J, Zhang Y-P, Fan Y-J (2017) Hydrogen co-reduction synthesis of PdPtNi alloy nanoparticles on carbon nanotubes as enhanced catalyst for formic acid electrooxidation. Int J Hydrog Energy 42:7226–7234

    CAS  Google Scholar 

  21. Khan IA, Qian Y, Badshah A, Zhao D, Nadeem M (2016) Fabrication of highly stable and efficient PtCu alloy nanoparticles on highly porous carbon for direct methanol fuel cells. ACS Appl Mater Interfaces 8:20793–20801

    CAS  PubMed  Google Scholar 

  22. Liang X, Ng S-P, Ding N, Wu C (2018) Enhanced hydrogen purification in nanoporous phosphorene membrane with applied electric field. J Phys Chem C 122:3497–3505

    CAS  Google Scholar 

  23. Pryadchenko VV, Srabionyan VV, Kurzin AA, Bulat NV, Shemet DB, Avakyan LA, Belenov SV, Volochaev VA, Zizak I, Guterman VE, Bugaev LA (2016) Bimetallic PtCu core-shell nanoparticles in PtCu/C electrocatalysts: Structural and electrochemical characterization. Appl Catal A Gen 525:226–236

    CAS  Google Scholar 

  24. Chen D, Zhao Y, Peng X, Wang X, Hu W, Jing C, Tian S, Tian J (2015) Star-like PtCu nanoparticles supported on graphene with superior activity for methanol electro-oxidation. Electrochim Acta 177:86–92

    CAS  Google Scholar 

  25. Peng X, Chen D, Yang X, Wang D, Li M, Tseng C, Panneerselvam R, Wang X, Hu W, Tian J, Zhao Y (2016) Microwave-assisted synthesis of highly dispersed PtCu nanoparticles on three-dimensional nitrogen-doped graphene networks with remarkably enhanced methanol electrooxidation. ACS Appl Mater Interfaces 8:33673–33680

    CAS  PubMed  Google Scholar 

  26. El-Deeb H, Bron M (2015) Electrochemical dealloying of PtCu/CNT electrocatalysts synthesized by NaBH4-assisted polyol-reduction: influence of preparation parameters on oxygen reduction activity. Electrochim Acta 164:315–322

    CAS  Google Scholar 

  27. Kugai J, Okazaki T, Seino S, Nakagawa T, Yamamoto T, Tanaka S (2017) Effects of carboxylate stabilizers on the structure and activity of carbon-supported Pt–Cu nanoparticles towards methanol oxidation. Int J Hydrog Energy 42:2984–2995

    CAS  Google Scholar 

  28. Inoue M, Nagai K, Shironita S, Takayuki A, Minoru U (2015) Post-annealing effects on reaction selectivity of methanol oxidation at carbon-based platinum co-sputtered electrocatalyst. Electrochemistry 83:368–371

    CAS  Google Scholar 

  29. Hussain S, Erikson H, Kongi N, Merisalu M, Ritslaid P, Sammelselg V, Tammeveski K (2017) Heat-treatment effects on the ORR activity of Pt nanoparticles deposited on multi-walled carbon nanotubes using magnetron sputtering technique. Int J Hydrog Energy 42:5958–5970

    CAS  Google Scholar 

  30. Gatalo M, Ruiz-Zepeda F, Hodnik N, Dražić G, Bele M, Gaberšček M (2019) Insights into thermal annealing of highly-active PtCu3/C oxygen reduction reaction electrocatalyst: an in-situ heating transmission electron microscopy study. Nano Energy 63:2211–2855

    Google Scholar 

  31. Khalakhan I, Vorokhta M, KúŠ P, Dopita M, Václavů M, Fiala R, Tsud N, Skála T, Matolín V (2017) In situ probing of magnetron sputtered Pt-Ni alloy fuel cell catalysts during accelerated durability test using EC-AFM. Electrochim Acta 245:760–769

    CAS  Google Scholar 

  32. Maya-Cornejo J, Carrera-Cerritos R, Sebastian D, Ledesma-García J, Arriaga L, Aricò A, Baglio V (2017) PtCu catalyst for the electro-oxidation of ethanol in an alkaline direct alcohol fuel cell. Int J Hydrog Energy 42:27919–27928

    CAS  Google Scholar 

  33. Huang Y, Zhao T, Zeng L, Tan P, Xu J (2016) A facile approach for preparation of highly dispersed platinum-copper/carbon nanocatalyst toward formic acid electro-oxidation. Electrochim Acta 190:956–963

    CAS  Google Scholar 

  34. Garcia-Cardona J, Sirés I, Alcaide F, Brillas E, Centellas F, Cabot P (2020) Electrochemical performance of carbon-supported Pt(Cu) electrocatalysts for low-temperature fuel cells. Int J Hydrog Energy 45:20582–20593

    CAS  Google Scholar 

  35. Hang J, Song Y, Ma D, Zheng Y, Chen M, Wan H (2017) The effect of the support on the surface composition of PtCu alloy nanocatalysts: In situ XPS and HS-LEIS studies. Chin J Catal 38:1229–1236

    Google Scholar 

  36. Su Y, Feng M, Zhang C, Yan Z, Liu H, Tang J, Du H (2015) Platinum nanowires: structural and catalytic evolution upon annealing temperature. Electrochim Acta 164:182–186

    CAS  Google Scholar 

  37. Dan X, Zhaoping L, Hongzhou Y, Qingshen L, Jun Z, Jiye F, Shouzhong Z, Kai S (2009) Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes. Angew Chem Int Ed 48:4217–4221

    Google Scholar 

  38. Wu B, Li Y, Wang C, Xue D, Xiao J (2014) High aqueous solubility of carboxylated-carbon nanotubes as support for PtRu nanoparticles: enhanced dispersion and electrocatalytic performance. Int J Hydrog Energy 39:7318–7325

    CAS  Google Scholar 

  39. Bao Y, Liu H, Liu Z, Wang F, Feng L (2020) Pd/FeP catalyst engineering via thermal annealing for improved formic acid electrochemical oxidation. Appl Catal B 274:119106. https://doi.org/10.1016/j.apcatb.2020.119106

    Article  CAS  Google Scholar 

  40. Liu H, Yang D, Bao Y, Yu X, Feng L (2019) One-step efficiently coupling ultrafine Pt-Ni2P nanoparticles as robust catalysts for methanol and ethanol electro-oxidation in fuel cells reaction. J Power Sources 434:226754. https://doi.org/10.1016/j.jpowsour.2019.226754

    Article  CAS  Google Scholar 

  41. Zha M, Liu Z, Wang Q, Hu G, Feng L (2021) Efficient alcohols fuel oxidation catalyzed by a novel Pt/Se catalyst. Chem Commun 57:199–202

    CAS  Google Scholar 

  42. Ahmad YH, El-Sayed HA, Mohamed AT, Aljaber AS, Al-Qaradawi SY (2020) Rational one-pot synthesis of ternary PtIrCu nanocrystals as robust electrocatalyst for methanol oxidation reaction. Appl Surf Sci 534:147617. https://doi.org/10.1016/j.apsusc.2020.147617

    Article  CAS  Google Scholar 

  43. Bao Y, Feng L (2021) Formic acid electro-oxidation catalyzed by PdNi/graphene aerogel. Acta Phys-Chim Sin 37:2008031–2008038

    Google Scholar 

  44. Zhou Y, Liu D, Liu Z, Feng L, Yang J (2020) Interfacial Pd-O-Ce linkage enhancement boosting formic acid electrooxidation. ACS Appl Mater Interfaces 12:47065–47075

    CAS  PubMed  Google Scholar 

  45. Zhou Y, Liu D, Qiao W, Liu Z, Yang J, Feng L (2021) Ternary synergistic catalyst system of Pt-Cu-Mo2C with high activity and durability for alcohol oxidation. Mater Today Phys 17:100357. https://doi.org/10.1016/j.mtphys.2021.100357

    Article  CAS  Google Scholar 

  46. Xiong Y, Ma Y, Lin Z, Xu Q, Yang Y, Zhang H, Wu J, Yang D (2016) Facile synthesis of PtCu3 alloy hexapods and hollow nanoframes as highly active electrocatalysts for methanol oxidation. CrystEngComm 18:7823–7830

    CAS  Google Scholar 

  47. Liu Y, Ren G, Wang M, Zhang Z, Liang Y, Wu S, Shen J (2019) Facile synthesis of trimetallic PtAuCu alloy nanowires as high-performance electrocatalysts for methanol oxidation reaction. J Alloys Compd 5:504–511

    Google Scholar 

  48. Qin G, Li Z, Leng D, Ye K, Zhang Y, Zhang D, Huang F, Liu Q, Yin F (2021) PtGd/Gd2O3 alloy/metal oxide composite catalyst for methanol oxidation reaction. Int J Hydrog Energy 46:25782–25789

    CAS  Google Scholar 

  49. Liu S, Dong F, Tang Z, Wang Q (2021) The formation of wrapping type Pt-Ni alloy on three-dimensional carbon nanosheet for electrocatalytic oxidation of methanol. Int J Hydrog Energy 46:15431–15441

    CAS  Google Scholar 

  50. Sun B, Huang L, Su S, Luo S, Meng C, Hafiz M, Hafiz M-A, Xiao J, Bian T, Su S (2020) PtRhCu ternary alloy nanodendrites with enhanced catalytic activity and durability toward methanol electro-oxidation. Mater Chem Phys 15:123234. https://doi.org/10.1016/j.matchemphys.2020.123234

    Article  CAS  Google Scholar 

  51. Zhang J, He J, Wang X, Fan Y, Zhang X, Zhang J, Chen W, Sun S (2019) One-step synthesis in deep eutectic solvents of PtV alloy nanonetworks on carbon nanotubes with enhanced methanol electrooxidation performance. Int J Hydrog Energy 44:28709–28719

    CAS  Google Scholar 

  52. Wang Z, Yin G, Zhang J, Sun Y, Shi P (2006) Co-catalytic effect of Ni in the methanol electro-oxidation on Pt-Ru/C catalyst for direct methanol fuel cell. Electrochim Acta 51:5691–5697

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohua Wu.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Du, F., Wang, H. et al. Effects of annealing temperature of PtCu/MWCNT catalysts on their electrocatalytic performance of electrooxidation of methanol. Ionics 28, 369–382 (2022). https://doi.org/10.1007/s11581-021-04311-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04311-7

Keywords

Navigation