Skip to main content

Advertisement

Log in

Waste to wealth: SnO2 nanoparticles anchoring jute fiber cellulose carbon substrates as anode materials for high-performance lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, SnO2 nanoparticles were designed and synthesized by the hydrothermal method. It was confined to a jute fiber cellulose carbon (JFCC) framework, which was equivalent to a biomass carbon buffer layer wrapped around SnO2 nanoparticles. The combination of SnO2 nanoparticles and the amorphous carbon buffer layer alleviated the volume expansion effect of SnO2 to a certain extent, shortened the lithium-ion diffusion path, and improved the conductivity. At 0.2C, the discharge specific capacity of the composite (SnO2@JFCC) was finally stabilized at 1298.5 mAh g−1 after 100 cycles. The discharge specific capacity was stabilized at 1090.3 mAh g−1 for 1000 cycles at 2C, which further showed the good synergy between SnO2 nanoparticles and JFCC and exhibited excellent lithium storage performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fujishige M, Yoshida I, Toya Y, Banba Y, Oshida K-I, Tanaka Y-S, Dulyaseree P, Wongwiriyapan W, Takeuchi K (2017) Preparation of activated carbon from bamboo-cellulose fiber and its use for EDLC electrode material. J Environ Chem Eng 5(2):1801–1808

    Article  CAS  Google Scholar 

  2. Han Q, Zhang W, Geng D, Li Y, Zhang X, Han Z (2020) Preparation of shape-controlled electric-eel-inspired SnO2@C anode materials via SnC2O4 precursor approach for energy storage. J Mater Sci 55(25):11524–11534

    Article  CAS  Google Scholar 

  3. Hernandez-Rentero C, Marangon V, Olivares-Marin M, Gomez-Serrano V, Caballero A, Morales J, Hassoun J (2020) Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode. J Colloid Interface Sci 573:396–408

    Article  CAS  PubMed  Google Scholar 

  4. Tan L, Hu R, Zhang H, Lan X, Liu J, Wang H, Yuan B, Zhu M (2021) Subzero temperature promotes stable lithium storage in SnO2. Energy Stor Mater 36:242–250

    Google Scholar 

  5. Foley S, Geaney H, Kennedy T, Aminu I, Bree G, McCarthy K, Darwish S, Connolly S, Mukherjee S, Lebedev V, Zaworotko MJ, Ryan KM (2021) Tin-based oxide, alloy, and selenide Li-ion battery anodes derived from a bimetallic metal–organic material. Jf Phys Chem C 125(2):1180–1189

    Article  CAS  Google Scholar 

  6. Hu Z, Xu X, Wang X, Yu K, Hou J, Liang C (2019) SnO2@rice husk cellulose composite as an anode for superior lithium ion batteries. New J Chem 43(22):8755–8760

    Article  CAS  Google Scholar 

  7. Hu Z, Xu X, Wang X, Yu K, Liang C (2020) Ultrafine SnO2 nanoparticles anchored in the porous corn straw carbon substrate for high-performance Li-ion batteries application. J Alloys Compd 835:155446

  8. Lin L, Pei F, Peng J, Fu A, Cui J, Fang X, Zheng N (2018) Fiber network composed of interconnected yolk-shell carbon nanospheres for high-performance lithium-sulfur batteries. Nano Energy 54:50–58

    Article  CAS  Google Scholar 

  9. Liu D, Wei Z, Zhong B, Liu L, Zhang T, Duan X, Chen M, Wang H, Huang X (2020) SnO2 nanoparticles anchored on chlorinated graphene formed directly on Cu foil as binder-free anode materials for lithium-ion batteries. Appl Surf Sci 519:146190

  10. Luo S, Wang T, Lu H, Xu X, Xue G, Xu N, Wang Y, Zhou D (2020) Ultrasmall SnO2 nanocrystals embedded in porous carbon as potassium ion battery anodes with long-term cycling performance. New J Chem 44(27):11678–11683

    Article  CAS  Google Scholar 

  11. Ma B, Huang Y, Nie Z, Qiu X, Su D, Wang G, Yuan J, Xie X, Wu Z (2019) Facile synthesis of Camellia oleifera shell-derived hard carbon as an anode material for lithium-ion batteries. RSC Adv 9(35):20424–20431

    Article  CAS  Google Scholar 

  12. Qiu H, Yue H, Zhang T, Ju Y, Zhang Y, Guo Z, Wang C, Chen G, Wei Y, Zhang D (2016) Enhanced electrochemical performance of Li2FeSiO4/C positive electrodes for lithium-ion batteries via yttrium doping. Electrochim Acta 188:636–644

    Article  CAS  Google Scholar 

  13. Qiu H, Yue H, Zhang T, Li T, Wang C, Chen G, Wei Y, Zhang D (2016) Enhanced electrochemical performance of Li2FeSiO4/C cathode materials by surface modification with AlPO4 nanosheets. Electrochim Acta 222:1870–1877

    Article  CAS  Google Scholar 

  14. Tian F, Zhang Y, Liu L, Shi Q, Li J, Zhao Q, Zhang Y, Cheng Y, Zhou C, Yang S, Song X (2021) Thermally reshaped polyvinylpyrrolidone/SnO2@p-toluenesulfonic acid-doped polypyrrole nanocables with high capacity and excellent cycle performance as anode for lithium-ion batteries. J Alloys Compd 867:159067

  15. He M, Yuan L, Hu X, Zhang W, Shu J, Huang Y (2013) A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries. Nanoscale 5(8):3298–3305

    Article  CAS  PubMed  Google Scholar 

  16. Zhou Y, Wang F, Jin X, Yang J, Du K, Feng T, Lei J (2020) Rapid preparation of ultra-fine and well-dispersed SnO2 nanoparticles via a double hydrolysis reaction for lithium storage. Nanoscale 12(29):15697–15705

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Zhu L, Yao T, Liu T, Qian R, Li F, Han X, Yu L, Wang H (2020) Space-confined synthesis of ultrasmall SnO2 nanodots within ordered mesoporous carbon CMK-3 for high-performance lithium ion batteries. Energy Fuels 34(6):7709–7715

    Article  CAS  Google Scholar 

  18. Tran QN, Kim IT, Hur J, Kim JH, Choi HW, Park SJ (2020) Composite of nanocrystalline cellulose with tin dioxide as lightweight substrates for high-performance lithium-ion battery. Korean J Chem Eng 37(5):898–904

    Article  Google Scholar 

  19. Wang M-S, Lei M, Wang Z-Q, Zhao X, Xu J, Yang W, Huang Y, Li X (2016) Scalable preparation of porous micron-SnO2/C composites as high performance anode material for lithium ion battery. J Power Sources 309:238–244

    Article  CAS  Google Scholar 

  20. Wang Y, Xu Y, Zhou J, Wang C, Zhang W, Li Z, Guo F, Chen H, Zhang H (2020) Highly dispersed SnO2 nanoparticles confined on xylem fiber-derived carbon frameworks as anodes for lithium-ion batteries. J Electroanal Chem 879:114753

  21. Wu F, Zhang M, Bai Y, Wang X, Dong R, Wu C (2019) Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries. ACS Appl Mater Interfaces 11(13):12554–12561

    Article  CAS  PubMed  Google Scholar 

  22. Wang P, Yan Y, Cheng C, Zhang W, Zhou D, Li L, Yang X, Liao X-Z, Ma Z-F, He Y-S (2021) Structural and chemical interplay between nano-active and encapsulation materials in a core–shell SnO2@MXene lithium ion anode system. CrystEngComm 23(2):368–377

    Article  CAS  Google Scholar 

  23. Wang M, Chen T, Liao T, Zhang X, Zhu B, Tang H, Dai C (2021) Tin dioxide-based nanomaterials as anodes for lithium-ion batteries. RSC Adv 11(2):1200–1221

    Article  CAS  Google Scholar 

  24. Yu K, Liu T, Zheng Q, Wang X, Liu W, Liang J, Liang C (2020) Rice husk lignin-based porous carbon and ZnO composite as an anode for high-performance lithium-ion batteries. J Porous Mater 27(3):875–882

    Article  CAS  Google Scholar 

  25. Tan Q, Bao S, Kong X, Zheng X, Xu Z, Hu Y, Liu X, Wang C, Xu B (2021) Hierarchical goethite nanoparticle and tin dioxide quantum dot anchored on reduced graphene oxide for long life and high rate lithium-ion storage. J Colloid Interface Sci 590:580–590

    Article  CAS  PubMed  Google Scholar 

  26. Feng Y, Wu K, Ke J, Guo Z, Deng X, Bai C, Sun Y, Wang Q, Yang B, Dong H, Xiong D, He M (2021) Synthesis of ternary SnO2–MoO3–C composite with nanosheet structure as high-capacity, high-rate and long-lifetime anode for lithium-ion batteries. Ceram Int 47(7):9303–9309

    Article  CAS  Google Scholar 

  27. Zhou X, Chen F, Bai T, Long B, Liao Q, Ren Y, Yang J (2016) Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries. Green Chem 18(7):2078–2088

    Article  CAS  Google Scholar 

  28. Zhuang H, Han M, Ma W, Ou Y, Jiang Y, Li W, Liu X, Zhao B, Zhang J (2021) Sandwich-structured graphene hollow spheres limited Mn2SnO4/SnO2 heterostructures as anode materials for high-performance lithium-ion batteries. J Colloid Interface Sci 586:1–10

    Article  CAS  PubMed  Google Scholar 

  29. Liu C, He Z, Niu J, Cheng Q, Zhao Z, Li H, Shi J, Wang H (2021) Two-dimensional SnO2 anchored biomass-derived carbon nanosheet anode for high-performance Li-ion capacitors. RSC Adv 11(17):10018–10026

    Article  CAS  Google Scholar 

  30. Liu T, Yao T, Li L, Zhu L, Wang J, Li F, Wang H (2020) Embedding amorphous lithium vanadate into carbon nanofibers by electrospinning as a high-performance anode material for lithium-ion batteries. J Colloid Interface Sci 580:21–29

    Article  CAS  PubMed  Google Scholar 

  31. Wu N, Du W, Gao X, Zhao L, Liu G, Liu X, Wu H, He YB (2018) Hollow SnO2 nanospheres with oxygen vacancies entrapped by a N-doped graphene network as robust anode materials for lithium-ion batteries. Nanoscale 10(24):11460–11466

    Article  CAS  PubMed  Google Scholar 

  32. Pan Q, Zheng F, Ou X, Yang C, Xiong X, Liu M (2017) MoS2 encapsulated SnO2-SnS/C nanosheets as a high performance anode material for lithium ion batteries. Chem Eng J 316:393–400

    Article  CAS  Google Scholar 

  33. Wang Y-X, Lim Y-G, Park M-S, Chou S-L, Kim JH, Liu H-K, Dou S-X, Kim Y-J (2014) Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J Mater Chem A 2(2):529–534

    Article  CAS  Google Scholar 

  34. He H, Fu W, Wang H, Wang H, Jin C, Fan HJ, Liu Z (2017) Silica-modified SnO2-graphene “slime” for self-enhanced li-ion battery anode. Nano Energy 34:449–455

    Article  CAS  Google Scholar 

  35. Song H, Wang HX, Lin Z, Yu L, Jiang X, Yu Z, Xu J, Pan L, Zheng M, Shi Y, Chen K (2016) Hierarchical nano-branched c-Si/SnO2 nanowires for high areal capacity and stable lithium-ion battery. Nano Energy 19:511–521

    Article  CAS  Google Scholar 

  36. Zhao K, Zhang L, Xia R, Dong Y, Xu W, Niu C, He L, Yan M, Qu L, Mai L (2016) SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 12(5):588–594

    Article  CAS  PubMed  Google Scholar 

  37. Kim H, Choi W, Yoon J, Um JH, Lee W, Kim J, Cabana J, Yoon W-S (2020) Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries. Chem Rev 120(14):6934–6976

    Article  CAS  PubMed  Google Scholar 

  38. Keppeler M, Srinivasan M (2017) Interfacial phenomena/capacities beyond conversion reaction occurring in nano-sized transition-metal-oxide-based negative electrodes in lithium-ion batteries: a review. ChemElectroChem 4(11):2727–2754

    Article  CAS  Google Scholar 

  39. Yu SH, Lee SH, Lee DJ, Sung YE, Hyeon T (2016) Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 12(16):2146–2172

    Article  CAS  PubMed  Google Scholar 

  40. Nam S, Kim S, Wi S, Choi H, Byun S, Choi S-M, Yoo S-I, Lee KT, Park B (2012) The role of carbon incorporation in SnO2 nanoparticles for Li rechargeable batteries. J Power Sources 211:154–160

    Article  CAS  Google Scholar 

  41. Lian P, Liang S, Zhu X, Yang W, Wang H (2011) A novel Fe3O4–SnO2–graphene ternary nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 58:81–88

    Article  CAS  Google Scholar 

  42. Wang X, Li Z, Yin L (2013) Nanocomposites of SnO2@ordered mesoporous carbon (OMC) as anode materials for lithium-ion batteries with improved electrochemical performance. CrystEngComm 15(37):7589–7597

  43. Woo H, Wi S, Kim J, Kim J, Lee S, Hwang T, Kang J, Kim J, Park K, Gil B, Nam S, Park B (2018) Complementary surface modification by disordered carbon and reduced graphene oxide on SnO2 hollow spheres as an anode for Li-ion battery. Carbon 129:342–348

    Article  CAS  Google Scholar 

  44. Chang L, Yi Z, Wang Z, Wang L, Cheng Y (2019) Ultrathin SnO2 nanosheets anchored on graphene with improved electrochemical kinetics for reversible lithium and sodium storage. Appl Surf Sci 484:646–654

    Article  CAS  Google Scholar 

  45. Wang H-G, Jiang C, Yuan C, Wu Q, Li Q, Duan Q (2018) Complexing agent engineered strategy for anchoring SnO2 nanoparticles on sulfur/nitrogen co-doped graphene for superior lithium and sodium ion storage. Chem Eng J 332:237–244

    Article  CAS  Google Scholar 

  46. Ma C, Zhang W, He YS, Gong Q, Che H, Ma ZF (2016) Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. Nanoscale 8(7):4121–4126

    Article  CAS  PubMed  Google Scholar 

  47. Wang M, Li S, Zhang Y, Huang J (2015) Hierarchical SnO2/carbon nanofibrous composite derived from cellulose substance as anode material for lithium-ion batteries. Chemistry 21(45):16195–16202

    Article  CAS  PubMed  Google Scholar 

  48. Hyun G, Cho S-H, Park J, Kim K, Ahn C, Tiwari AP, Kim I-D, Jeon S (2018) 3D ordered carbon/SnO2 hybrid nanostructures for energy storage applications. Electrochim Acta 288:108–114

    Article  CAS  Google Scholar 

  49. Hu X, Zeng G, Chen J, Lu C, Wen Z (2017) 3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries. J Mater Chem A 5(9):4535–4542

    Article  CAS  Google Scholar 

  50. Zhang L, Zhao K, Yu R, Yan M, Xu W, Dong Y, Ren W, Xu X, Tang C, Mai L (2017) Phosphorus enhanced intermolecular interactions of SnO2 and graphene as an ultrastable lithium battery anode. Small 13(20):1603973

  51. Dou Y, Liu X, Wang X, Yu K, Liang C (2021) Jute fiber based micro-mesoporous carbon: a biomass derived anode material with high-performance for lithium-ion batteries. Mater Sci Eng B 265:115015

  52. Niu J, Shao R, Liang J, Dou M, Li Z, Huang Y, Wang F (2017) Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy 36:322–330

    Article  CAS  Google Scholar 

  53. Zhang J, Chen Z, Wang G, Hou L, Yuan C (2020) Eco-friendly and scalable synthesis of micro-/mesoporous carbon sub-microspheres as competitive electrodes for supercapacitors and sodium-ion batteries. Appl Surf Sci 533:147511

Download references

Funding

This work was financially supported by Jilin Provincial Scientific and Technological Department (YDZJ202101ZYTS145, 20190302055GX); the China Postdoctoral Science Foundation (2017M611321).

Author information

Authors and Affiliations

Authors

Contributions

YL: conceptualization, data curation; HL: methodology, investigation, data curation; XX: resources, investigation; HW: investigation; CL: investigation; KY: resources, conceptualization; CL: investigation, writing–review & editing.

Corresponding authors

Correspondence to Kaifeng Yu or Ce Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, H., Xu, X. et al. Waste to wealth: SnO2 nanoparticles anchoring jute fiber cellulose carbon substrates as anode materials for high-performance lithium-ion batteries. Ionics 27, 5103–5113 (2021). https://doi.org/10.1007/s11581-021-04286-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04286-5

Keywords

Navigation