Skip to main content
Log in

Manganese-based oxide layer with oxygen vacancies to enable fast ion/charge mobility for durable LiNi0.8Co0.1Mn0.1O2 cathode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The nickel-rich cathodes are always subject to their poor rate performance and cyclic stability. In our paper, a manganese-based oxide layer with oxygen vacancies (MnOx) as a protective coating was proposed to enhance the electrochemical performance of nickel-rich LiNi0.8Co0.1Mn0.1O2 via the sol–gel method. The results demonstrated that MnOx in modified electrode could enable fast ion/charge mobility for superior electrochemical performance. The reversible capacity of MnOx-modified NCM reached 128.2 mAh/g at 5 C, and the cyclic retention of 77.1% was maintained after 200 cycles at 0.5 C. It can be attributed to the MnOx protective layer with oxygen vacancies, which would prevent the side reaction of cathode with electrolytes, maintain the structural stability in long-term cycling and enable the fast ion/charge mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang F, Wu X, Li C, Zhu Y, Fu L, Wu Y, Liu X (2016) Nanostructured positive electrode materials for post-lithium ion batteries. Energy Environ Sci 9:3570–3611. https://doi.org/10.1039/C6EE02070D

    Article  CAS  Google Scholar 

  2. Schipper F, Bouzaglo H, Dixit M, Erickson EM, Weigel T, Talianker M, Grinblat J, Burstein L, Schmidt M, Lampert J, Erk C, Markovsky B, Major DT, Aurbach D (2018) From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Adv Energy Mater 8:1701682. https://doi.org/10.1002/aenm.201701682

    Article  CAS  Google Scholar 

  3. Lee J, Urban A, Li X, Su D, Hautier G, Ceder G (2014) Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343:519–522. https://doi.org/10.1126/science.1246432

    Article  CAS  PubMed  Google Scholar 

  4. Yu J, Peng J, Huang W, Wang L, Wei Y, Yang N, Li L (2021) Inhibition of excessive SEI-forming and improvement of structure stability for LiNi0.8Co0.1Mn0.1O2 by Li2MoO4 coating. Ionics 27:2867–2876. https://doi.org/10.1007/s11581-021-04085-y

    Article  CAS  Google Scholar 

  5. Dong MX, Wang ZX, Li HK, Guo HJ, Li XH, Shih KM, Wang JX (2017) Metallurgy inspired formation of homogeneous Al2O3 coating layer to improve the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material. ACS Sustain Chem Eng 5:10199–10205. https://doi.org/10.1021/acssuschemeng.7b02178

    Article  CAS  Google Scholar 

  6. Zhai H, Xia BY, Park HS (2019) Ti-based electrode materials for electrochemical sodium ion storage and removal. J Mater Chem A 7:22163–22188. https://doi.org/10.1039/C9TA06713B

    Article  CAS  Google Scholar 

  7. Zhu J, Li Y, Xue L, Chen Y, Lei T, Deng S, Cao G (2019) Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.8Co0.1Mn0.1]O2 cathode material via lithium-reactive coating. J Alloy Compd 773:112–120. https://doi.org/10.1016/j.jallcom.2018.09.237

    Article  CAS  Google Scholar 

  8. Zhao M, Xu Y, Ren P, Zuo Y, Su W, Tang Y (2020) Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 with a 3D-SiO2 framework by a new negative pressure immersion method. Dalton Trans 49:2933–2940. https://doi.org/10.1039/D0DT00054J

    Article  CAS  PubMed  Google Scholar 

  9. Zhao S, Zhu Y, Qian Y, Wang N, Zhao M, Yao J, Xu Y (2020) Annealing effects of TiO2 coating on cycling performance of Ni-rich cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion battery. Mater Lett 265:127418. https://doi.org/10.1016/j.matlet.2020.127418

    Article  CAS  Google Scholar 

  10. Xiong X, Wang Z, Yan G, Guo H, Li X (2014) Role of V2O5 coating on LiNiO2-based materials for lithium ion battery. J Power Sources 245:183–193. https://doi.org/10.1016/j.jpowsour.2013.06.133

    Article  CAS  Google Scholar 

  11. Dai S, Yuan M, Wang L, Luo L, Chen Q, Xie T, Li Y, Yang Y (2019) Ultrathin-Y2O3-coated LiNi0.8Co0.1Mn0.1O2 as cathode materials for Li-ion batteries: Synthesis, performance and reversibility. Ceram Int 45:674–680. https://doi.org/10.1016/j.ceramint.2018.09.227

    Article  CAS  Google Scholar 

  12. Xiong X, Wang Z, Yin X, Guo H, Li X (2013) A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0.8Co0.1Mn0.1O2 cathode materials. Mater Lett 110:4–9. https://doi.org/10.1016/j.matlet.2013.07.098

    Article  CAS  Google Scholar 

  13. Chen S, He T, Su Y, Lu Y, Bao L, Chen L, Zhang Q, Wang J, Chen R, Wu F (2017) Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 9:29732–29743. https://doi.org/10.1021/acsami.7b08006

    Article  CAS  PubMed  Google Scholar 

  14. Hu K, Qi X, Lu C, Du K, Peng Z, Cao Y, Hu G (2018) Enhanced electrochemical performance of LiNi­0.8Co0.1Mn0.1O2 cathode materials via Li4P2O7 surface modification for Li-ion batteries. Ceram Int 44:14209–14216. https://doi.org/10.1016/j.ceramint.2018.05.024

    Article  CAS  Google Scholar 

  15. Zhang B, Dong P, Tong H, Yao Y, Zheng J, Yu W, Zhang J, Chu D (2017) Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 with lithium-reactive Li3VO4 coating. J Alloy Compd 706:198–204. https://doi.org/10.1016/j.jallcom.2017.02.224

    Article  CAS  Google Scholar 

  16. Yang J, Xia Y (2016) Suppressing the phase transition of the layered Ni-Rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3. ACS Appl Mater Interfaces 8:1297–1308. https://doi.org/10.1021/acsami.5b09938

    Article  CAS  PubMed  Google Scholar 

  17. Zhao E, Chen M, Hu Z, Chen D, Yang L, Xiao X (2017) Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating. J Power Sources 343:345–353. https://doi.org/10.1016/j.jpowsour.2017.01.066

    Article  CAS  Google Scholar 

  18. Huang J, Fang X, Wu Y, Zhou L, Wang Y, Jin Y, Dang W, Wu L, Rong Z, Chen X, Tang X (2018) Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by surface modification with lithium-active MoO3. J Electroanal Chem 823:359–367. https://doi.org/10.1016/j.jelechem.2018.06.035

    Article  CAS  Google Scholar 

  19. Liu N, Wu X, Yin Y, Chen A, Zhao C, Guo Z, Fan L, Zhang N (2020) Constructing the efficient ion diffusion pathway by introducing oxygen defects in Mn2O3 for high-performance aqueous zinc-ion batteries. ACS Appl Mater Interfaces 12:28199–28205. https://doi.org/10.1021/acsami.0c05968

    Article  CAS  PubMed  Google Scholar 

  20. Zeng Y, Lai Z, Han Y, Zhang H, Xie S, Lu X (2018) Oxygen-Vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv Mater 30:1802396. https://doi.org/10.1002/adma.201802396

    Article  CAS  Google Scholar 

  21. Fang G, Zhu C, Chen M, Zhou J, Tang B, Cao X, Zheng X, Pan A, Liang S (2019) Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv Funct Mater 29:1808375. https://doi.org/10.1002/adfm.201808375

    Article  CAS  Google Scholar 

  22. Xiong T, Yu ZG, Wu H, Du Y, Xie Q, Chen J, Zhang Y-W, Pennycook SJ, Lee WSV, Xue J (2019) Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv Energy Mater 9:1803815. https://doi.org/10.1002/aenm.201803815

    Article  CAS  Google Scholar 

  23. Chen C, Xu K, Ji X, Zhang B, Miao L, Jiang J (2015) Enhanced electrochemical performance by facile oxygen vacancies from lower valence-state doping for ramsdellite-MnO2. J Mater Chem A 3:12461–12467. https://doi.org/10.1039/C5TA01930C

    Article  CAS  Google Scholar 

  24. Zhai T, Xie S, Yu M, Fang P, Liang C, Lu X, Tong Y (2014) Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8:255–263. https://doi.org/10.1016/j.nanoen.2014.06.013

    Article  CAS  Google Scholar 

  25. Wu J, Ma Q, Lian C, Yuan Y, Long D (2019) Promoting polythionate intermediates formation by oxygen-deficient manganese oxide hollow nanospheres for high performance lithium-sulfur batteries. Chem Eng J 370:556–564. https://doi.org/10.1016/j.cej.2019.03.078

    Article  CAS  Google Scholar 

  26. Lee JH, Kim KJ (2013) Superior electrochemical properties of porous Mn2O3-coated LiMn2O4 thin-film cathodes for Li-ion microbatteries. Electrochim Acta 102:196–201. https://doi.org/10.1016/j.electacta.2013.03.170

    Article  CAS  Google Scholar 

  27. Huang B, Wang M, Zhao Z, Chen L, Gu Y (2019) Effects of the strong oxidant treatment of precursor on the electrochemical properties of LiNi0.8Mn0.1Co0.1O2 for lithium-ion batteries. J Alloy Compd 810:151800. https://doi.org/10.1016/j.jallcom.2019.151800

    Article  CAS  Google Scholar 

  28. Maleki Kheimeh Sari H, Li X (2019) Controllable cathode–electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: A review. Adv Energy Mater 9:1901597. https://doi.org/10.1002/aenm.201901597

    Article  CAS  Google Scholar 

  29. Liu W, Oh P, Liu X, Lee M-J, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed 54:4440–4457. https://doi.org/10.1002/anie.201409262

    Article  CAS  Google Scholar 

  30. Nam K-W, Bak S-M, Hu E, Yu X, Zhou Y, Wang X, Wu L, Zhu Y, Chung K-Y, Yang X-Q (2013) Combining in situ synchrotron X-Ray Diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv Funct Mater 23:1047–1063. https://doi.org/10.1002/adfm.201200693

    Article  CAS  Google Scholar 

  31. Zhang M, Zhao H, Tan M, Liu J, Hu Y, Liu S, Shu X, Li H, Ran Q, Cai J, Liu X (2019) Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage. J Alloy Compd 774:82–92. https://doi.org/10.1016/j.jallcom.2018.09.281

    Article  CAS  Google Scholar 

  32. Li Y, Li D, Fan S, Yang T, Zhou Q (2020) Facile template synthesis of dumbbell-like Mn2O3 with oxygen vacancies for efficient degradation of organic pollutants by activating peroxymonosulfate. Catal Sci Technol 10:864–875. https://doi.org/10.1039/C9CY01849B

    Article  CAS  Google Scholar 

  33. Zhou H, Xin F, Pei B, Whittingham MS (2019) What limits the capacity of layered oxide cathodes in lithium batteries? ACS Energy Lett 4:1902–1906. https://doi.org/10.1021/acsenergylett.9b01236

    Article  CAS  Google Scholar 

  34. Lin F, Markus IM, Nordlund D, Weng T-C, Asta MD, Xin HL, Doeff MM (2014) Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun 5:3529. https://doi.org/10.1038/ncomms4529

    Article  CAS  PubMed  Google Scholar 

  35. Wang M, Zhang R, Gong Y, Su Y, Xiang D, Chen L, Chen Y, Luo M, Chu M (2017) Improved electrochemical performance of the LiNi0.8Co0.1Mn0.1O2 material with lithium-ion conductor coating for lithium-ion batteries. Solid State Ion 312:53–60. https://doi.org/10.1016/j.ssi.2017.10.017

    Article  CAS  Google Scholar 

  36. Li YC, Zhao WM, Xiang W, Wu ZG, Yang ZG, Xu CL, Xu YD, Wang EH, Wu CJ, Guo XD (2018) Promoting the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via LaAlO3 coating. J Alloy Compd 766:546–555. https://doi.org/10.1016/j.jallcom.2018.06.364

    Article  CAS  Google Scholar 

  37. Zhai H, Qi J, Tan Y, Yang L, Li H, Kang Y, Liu H, Shang J, Park HS (2020) Construction of 1D-MoS2 nanorods/LiNb3O8 heterostructure for enhanced hydrogen evolution. Appl Mater Today 18:100536. https://doi.org/10.1016/j.apmt.2019.100536

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No. NS2017030); and the Opening Funding of National Laboratory of Solid State Microstructure (No. M34038). We would like to acknowledge their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Zhou Kong or Fei Zhou.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, RP., Kong, JZ., Xu, P. et al. Manganese-based oxide layer with oxygen vacancies to enable fast ion/charge mobility for durable LiNi0.8Co0.1Mn0.1O2 cathode. Ionics 27, 5009–5019 (2021). https://doi.org/10.1007/s11581-021-04282-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04282-9

Keywords

Navigation