Skip to main content
Log in

Preparation and performance of porous polyethersulfone (PES)/Al2O3 separator for high-performance lithium-oxygen battery

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The polymer separator is part of the gel polymer electrolyte (GPE) and plays a crucial role in battery. In this study, a novel PES-based separator for lithium-oxygen batteries was prepared using non-solvent-induced phase separation (NIPS) technique firstly and modified by doping Al2O3 nanoparticles. It is proved that the properties of the PES/Al2O3 separator are affected by the presence of Al2O3 nanoparticles. The results show that the PES/Al2O3 separator with Al2O3 content of 2 wt% and 4 wt% has lower crystallinity, higher electrolyte uptake, and better mechanical properties and thermal stability than PES-based separator without Al2O3. The resulting PES/Al2O3 separator containing 4 wt% Al2O3 has higher ionic conductivity (0.49 mS cm−1) and lithium ions transference number (0.28). Consequently, the assembled batteries with the PES/Al2O3 separator containing 4 wt% Al2O3 exhibit excellent cycling performance (75 cycles, 1000 mAh g−1 at 0.05 mA cm−2). Therefore, PES/Al2O3 separator has a significance meaning in the research of high-safety and long-cycle lithium-oxygen battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang YG, He P, Zhou HS (2011) A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ Sci 4(12):4994–4999

    Article  CAS  Google Scholar 

  2. Wu SC, Qiao Y, Yang SX, Ishida M, He P, Zhou HS (2017) Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes. Nat Commun 8(8):15607–15621

    Article  CAS  Google Scholar 

  3. Wei SY, LA Lin A, Hendrickson KE (2015) Nanomaterials: science and applications in the lithium-sulfur battery. Nano Today 10(3):315–338

    Article  Google Scholar 

  4. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(2):19–29

    Article  CAS  Google Scholar 

  5. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203

    Article  CAS  Google Scholar 

  6. Zheng JP, Liang RY, Hendrickson MA, Plichta EJ (2008) Theoretical energy density of Li-air batteries. J Electrochem Soc 155(6):432–437

    Article  Google Scholar 

  7. Shao Y, Ding F, Xiao JA, Zhang J, Xu W, Park S, Zhang JG, Yong W, Liu J (2013) Making Li-air batteries rechargeable: material challenges. Adv Funct Mater 23:987–1004

    Article  CAS  Google Scholar 

  8. Balaish M, Kraytsberg A, Ein-Eli Y (2014) A critical review on lithium-air battery electrolytes. Phys Chem Chem Phys 16(7):2801–2822

    Article  CAS  Google Scholar 

  9. Zhang KF, Mu SJ, Liu W, Zhu D, Ding ZD, Chen YG (2018) A flexible NASICON-type composite electrolyte for lithium-oxygen/air battery. Ionics 25:25–33

    Article  Google Scholar 

  10. Amaral FA, Dalmolin C, Canobre SC, Bocchi N, Rocha-Filho RC, Biaggio SR (2007) Electrochemical and physical properties of poly(acrylonitrile)/poly(vinylacetate)-based gel electrolytes for lithium ion batteries. J Power Sources 164(1):379–385

    Article  CAS  Google Scholar 

  11. Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5

    Article  CAS  Google Scholar 

  12. Read J (2006) Ether-based electrolytes for the lithium/oxygen organic electrolyte battery. J Electrochem Soc 153(1):96–100

    Article  Google Scholar 

  13. Chamaani A, Chawla N, Safa M, El-Zahab B (2017) One-dimensional glass micro-fillers in gel polymer electrolytes for Li-O2 battery applications. Electrochim Acta 235:56–63

    Article  CAS  Google Scholar 

  14. Liu LP, Wang Z, Zhao ZK, Zhao YJ, Yang LB (2016) PVDF/PAN/SiO2 polymer electrolyte membrane prepared by combination of phase inversion and chemical reaction method for lithium ion batteries. J Solid State Electrochem 20(3):699–712

    Article  CAS  Google Scholar 

  15. Subramania A, Sundaram NTK, Kumar GV (2006) Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVdF-co-HFP-PAN for Li-ion battery applications. J Power Sources 153(1):177–182

    Article  CAS  Google Scholar 

  16. Guan R, Zou H, Lu DP, Gong CL, Liu YF (2005) Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics. Eur Polym J 41(7):1554–1560

    Article  CAS  Google Scholar 

  17. Croce F, Persi LL, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46:2457–2461

    Article  CAS  Google Scholar 

  18. Zhou D, Liu RL, He YB, Li FY, Liu M, Li BH, Yang QH, Cai Q, Kang FY (2016) SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Adv Energy Mater 6:1–10

    Google Scholar 

  19. Zhang P, Yang LC, Li LL, Ding ML, Wu YP, Holze R (2011) Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires. J Membr Sci 379(1–2):80–85

    Article  CAS  Google Scholar 

  20. Li ZH, Su GY, Wang XY, Gao DS (2005) Microporous P(VDF-HFP)-based polymer electrolyte filled with Al2O3 nanoparticles. Solid State Ion 176(23–24):1903–1908

    Article  CAS  Google Scholar 

  21. Tian Z, He XM, Pu WH, Wan CR, Jiang CY (2006) Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries. Electrochim Acta 52(2):688–693

    Article  CAS  Google Scholar 

  22. Wang SJ, Long CF, Wang XY, Li Q, Qi ZN (1998) Synthesis and properties of silicone rubber/organomontmorillonite hybrid nanocomposites. J Appl Polym Sci 69:1557–1561

    Article  CAS  Google Scholar 

  23. Jung HR, Ju DH, Lee WJ, Zhang XW, Kotek R (2009) Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte separators. Electrochim Acta 54(13):3630–3637

    Article  CAS  Google Scholar 

  24. Lu QW, Fang JH, Yang J, Miao RR, Wang J, Nuli YN (2014) Novel cross-linked copolymer gel electrolyte supported by hydrophilic polytetrafluoroethylene for rechargeable lithium batteries. J Membr Sci 449:176–183

    Article  CAS  Google Scholar 

  25. Wang D, Zhao ZL, Yu L, Zhang KJ, Na HI, Ying SQ, Xu DC, Zhang G (2014) Polydopamine hydrophilic modification of polypropylene separator for lithium ion battery. J Appl Polym Sci 131(15):40543

    Google Scholar 

  26. Tang HW, Zhang LP, Li S, Zhao GJ, Qin Z, Sun SQ (2010) Study on spectroscopic characterization and property of PES/micro-nano cellulose composite separator material. Spectr Anal 30(3):630–634

    CAS  Google Scholar 

  27. Zhu FF, Liu JQ, Zhao HJ, Li J, Li Q, Xi Y, Liu M, Wang C (2019) Preparation and performance of porous polyetherimide/Al2O3 separator for enhanced lithium-sulfur batteries. ChemElectroChem 6:2883–2890

    Article  CAS  Google Scholar 

  28. Strathmann H, Kock K (1977) The formation mechanism of phase inversion membranes. Desalination 21(3):241–255

    Article  CAS  Google Scholar 

  29. Mao JX, Damodaran K (2015) Spectroscopic and computational analysis of the molecular interactions in the ionic liquid [Emim]+[FAP]. Ionics 21:1605–1613

    Article  CAS  Google Scholar 

  30. Liu JQ, Xi Y, Li QH, Li J, Liu M, Wang C, Hong ZK, Song FF, Bai LS, Zeng FL (2020) An enhanced polyethylene/polyetherimide composite separator with high safety for good performance lithium-sulfur batteries. Ionics 26:4825–4833

    Article  CAS  Google Scholar 

  31. Raghavan P, Zhao XH, Manuel J, Chauhan GS, Ahn JH, Ryu HS, Ahn HJ, Kim KW, Nah C (2010) Electrochemical performance of electrospun poly(vinylideneflfluoride-co-hexaflfluoropropylene) based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid. Electrochim Acta 55:1347–1354

    Article  CAS  Google Scholar 

  32. Balaish M, Kraytsberg A, Ein-Eli Y (2014) A critical review on lithium-air battery electrolytes. Phys Chem Chem Phys 16:2801–2822

    Article  CAS  Google Scholar 

  33. Nishikami Y, Konishi T, Omoda R, Aihara Y, Oyaizu K, Nishide H (2015) Oxygen enriched electrolytes based on perfluorochemicals for high-capacity lithium-oxygen batteries. J Mater Chem A 3:10845–10850

    Article  CAS  Google Scholar 

  34. Chamaani A, Safa M, Chawla N, El-Zahab B (2017) Composite gel polymer electrolyte for improved cyclability in lithium-oxygen batteries. ACS Appl Mater Interfaces 9:33819–33826

    Article  CAS  Google Scholar 

  35. Tokur M, Algul H, Cetinkaya T, Uysal M, Akbulut H (2016) Improved electrochemical performance of lithium oxygen batteries with N-methyl-2-pyrrolidone based composite polymer electrolytes. J Electrochem Soc 163(7):1326–1335

    Article  Google Scholar 

  36. Wu CLM, Liao CB, Li TR, Shi YQ, Luo JS, Li L, Yang J (2016) A polymer lithium-oxygen battery based on semipolymeric conducting ionomers as the polymer electrolyte. J Mater Chem A 4:15189–15196

    Article  CAS  Google Scholar 

  37. Yi J, Liu XZ, Guo SH, Zhu K, Xue HL, Zhou HS (2015) Novel stable gel polymer electrolyte: toward a high safety and long life li-air battery. ACS Appl Mater Interfaces 7(42):23798–23804

    Article  CAS  Google Scholar 

  38. Li T, Wang CD, Cheng JM, Guo J, Xiao A, Hou HB, Wang QG, Wang B, Chen X, Cui GL (2020) Janus polymer composite electrolytes improve the cycling performance of lithium-oxygen battery. ACS Appl Mater Interfaces 12:12857–12866

    Article  CAS  Google Scholar 

  39. Wooa HS, Kima JH, Moona YB, Kimb WK, Ryub KH, Kima DW (2018) A dual membrane composed of composite polymer membrane and glass fiber membrane for rechargeable lithium-oxygen batteries. J Membr Sci 550:340–347

    Article  Google Scholar 

  40. Chibueze VA, Jonathon RH, Yang SH, Paula TH (2015) Understanding the chemical stability of polymers for lithium-air batteries. Chem Mater 27:550–561

    Article  Google Scholar 

Download references

Funding

The authors would like to give our sincere gratitude to the support by National Key R&D Program of China (Grant No. 2018YFB0104200), Special Funds for the Construction of Innovative Province of Hunan (Grant No. 2020GK2056), Natural Science Foundation of Hunan Province (Grant No. 2020JJ4717), and the Open-End Fund for the Valuable and Precision Instruments of Central South University (Grant No. CSUZC202030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuqing Liu.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Song, F., Li, Q. et al. Preparation and performance of porous polyethersulfone (PES)/Al2O3 separator for high-performance lithium-oxygen battery. Ionics 27, 4927–4936 (2021). https://doi.org/10.1007/s11581-021-04274-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04274-9

Keywords

Navigation